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Reverse Engineering
Class 3

Executable Binaries
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Binaries Analysis

● Static analysis based on the executable format 
● Exported functions and variables
● Imported functions and variables
● Symbols and Strings tables
● Debug information

● But, not everything is exported and has 
symbols!
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Binaries Analysis

● When compiling and linking information is lost
● Function and variables names, comments
● Variables types
● Non exported functions location (static) and relocation 

information
● Functions parameters
● This lost may be on purpose: strip a binary for release
● Compiling is a many-to-many operation

● Same assembly code, different source code (or 
viceversa)
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Binaries Analysis

● Static analysis on executable code
● Disassembly heuristics
● Functions identification
● Function parameters identification
● Local and global variables identification
● “basic blocks” identification (function flow)
● Cross-references identification
● All of this can be automated! 
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Binaries Analysis

● Disassembly heuristics
● Linear Sweep

● From a starting point (I.e. function 
symbol, .text section start or binary entry 
point) a linear disassembly is done
● Instructions and operands of variable 

but known length (x86) or fixed length 
(ARM)

● I.e. mov, add, push, etc.



6Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Binaries Analysis

● Disassembly heuristics
● Recursive Descent

● Conditional branching (if, while, for, switch)
● One branch is disassembled and the 

other one is marked for future 
disassemble

● Unconditional branching (jmp, call)
● Problem: is the jump target known?
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Binaries Analysis

● Disassembly heuristics
● Recursive Descent

● Unconditional branching (jmp, call)
● If we know it, disassemble the target. If 

not, we have a problem. 
● In a call we assume that a “return” to the 

next instruction exists. Thus, next 
address is marked as pending for future 
disassembly.
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Binaries Analysis
Entry point (known) in binary 
stream

Variable (but known) length for 
opcodes and operands on this 
architecture
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Binaries Analysis
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Binaries Analysis

Where to continue disassembling? CALL to an address 
held in a local variable, only known in run time
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Binaries Analysis

● In CISC architectures like x86/x86_64 (with 
extended instructions sets), many opcodes may 
be valid.

● However, not every instruction is equally likely or 
frequent. Executable binary type may provide 
hints: are we expecting floating point instructions?

● Can we differentiate an executable binary 
manually written in assembly from one generated 
by a compiler? Can we identify idioms or 
patterns? 
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Binaries Analysis

● Compilers tend to use certain instructions more 
frequently and generate specific patterns 
following conventions or binary interfaces 
(ABIs).

● It’s important to be able to make a judgment 
about the correctness of a disassembly
● And provide a hint to the disassembler 

regarding where to start.  
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Binaries Analysis

● Where should we start disassembling? 



14Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Binaries Analysis

● Does it look correct? 
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Binaries Analysis

● Does it look correct? no 

Rare instruction: ASCII 
Adjust AX After Multiply

Compilers sometimes 
do “silly” things but not 
this much
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Binaries Analysis

● Does it look correct? 
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Binaries Analysis

● Does it look correct?: yes 

1st parameter for a call 
(x86_64 ABI)

Call to a verifiable 
function

Compares function 
return value against -1
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Binaries Analysis

● In previous examples we assume that binary is 
not obfuscated / packed, and that is genuine 
compiler assembly
● Use case example: DLLs or SYS modules 

diffing from security patches
● When analyzing malware, these assumptions 

may not be true
● Part of this is “training”
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Binaries Analysis

● Functions identification
● Exported functions
● CALL instructions targets
● Epilogues (ABIs)

● Functions parameters identification
● Calling conventions (I.e. x86 ABI) to determine 

parameters count
● “mov” instructions for size
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Binaries Analysis

● Functions parameters identification
● Is up to the reverser to determine:

● Pointers meaning
● Structures

● When are their members written or 
read? That provides semantic value.

● Data types
– I.e. are floating point operations applied on a 

parameter?
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Binaries Analysis

● Calling conventions – Application Binary Interface (ABI)
● How is a function called at the assembly level? 

● Send parameters (values, alignment, structures)
● Return address
● Return value
● Stack balance
● Which registers are saved? Who is responsible for that?

● A convention is needed: code generated by one compiler 
may call libraries generated by a different compiler.

● These conventions depend on the CPU architecture and 
the platform (Windows, Unix, etc.)
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Binaries Analysis

x86
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Binaries Analysis

x86
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Binaries Analysis

● Calling conventions x86
● Cdecl

● Caller function balances the stack (parameters 
cleanup)

● Stdcall
● Callee function balances the stack (parameters 

cleanup)
● Common in Windows API

● Fastcall
● Parameters by registers
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Binaries Analysis

int __stdcall function_a(int p1) { return ++p1; }

int __cdecl function_b(int p1) { return ++p1; }

int __fastcall function_c(int p1) { return ++p1; }

void main(void) {
printf("function_a: %d\n", function_a(0));
printf("function_b: %d\n", function_b(1));
printf("function_c: %d\n", function_c(2));

} 

MSVC calling conventions
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Binaries Analysis

int __stdcall function_a(int p1) { return ++p1; }

main function

Parameter 1 pushed to the stack

function_a

Stack is not balanced, 
callee did it

printf

function_a function

Callee balances the stack, 
freeing up space used for the 
parameter
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Binaries Analysis

int __cdecl function_b(int p1) { return ++p1; }

main function

Parameter 1 pushed to the stack

function_b

Stack is balanced, 
freeing up space used 
for the parameter

printf

function_b function

Callee does not balance the 
stack
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Binaries Analysis

int __fastcall function_c(int p1) { return ++p1; }

main function

Parameter 1 loaded in a register

function_c

Stack remains balanced

printf
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Binaries Analysis

● Variables identification
● Similar to parameters identification
● Local variables are referenced (in x86) by 

EBP - offset
● Compiler can reference them with ESP
● Can be held in registers, depending on 

optimization levels
● Global variables are references to .data 

(initialized) and .bss (uninitialized) segments
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Binaries Analysis
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Binaries Analysis

Basic blocks
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Binaries Analysis

● Cross references identification
● Based on offsets

● + symbols information
● + value (I.e. String)

● Bidirectional search
● Good strategy to understand what a function 

does
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Binaries Analysis
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Binaries Analysis

● Patterns identification
● From assembly to source code

● A disassembler parses opcodes and 
shows the instructions mnemonic.

● A decompiler makes high level 
abstractions to show C code or pseudo-
code.
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Binaries Analysis
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Binaries Analysis
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Binaries Analysis

● Patterns identification

if ( condition_1 && condition_2 … && 
condition_n) {

do;

}
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Binaries Analysis
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Binaries Analysis
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Binaries Analysis

● Patterns identification

while ( condition_1 ) {
do;

}
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Binaries Analysis
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Binaries Analysis
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Binaries Analysis

● Patterns identification

   int max = 3;

   for ( int i = 0; i < max; i++ ) {
    …

}
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Binaries Analysis
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Binaries Analysis
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Binaries Analysis

● Patterns identification

if ( condition_1 ) {
goto error;

}

if ( condition_2 ) {
goto error;

}

error:
return 0;
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Binaries Analysis
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Binaries Analysis
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Binaries Analysis

● Patterns identification

switch ( variable ) {
    case 0:

        ...

        break;

    case 1:

        ...

        break;

}
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Binaries Analysis
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Binaries Analysis
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Binaries Analysis

● Patterns identification

int ( * f_ptr ) ( ) = f;

( * f_ptr ) ( );
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Binaries Analysis

● Dynamic analysis on executable code
● IDA Pro (debugger)
● Other debuggers

● Windbg, gdb, Ollydbg, etc.
● strace (Linux)
● API monitor (Windows)
● Wireshark
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Binaries Analysis

● Dynamic analysis on executable code
● Tools to monitor registry changes (Windows)
● Tools to monitor filesystem changes
● Integrated suite: Cuckoo
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Binaries Analysis

● Execution traces
● Do not stop execution (in opposition to braekpoints) and 

record:
● Instructions execution
● Memory reads or writes

● From which instruction was memory accessed
● Other state changes (i.e. registers)
● Thread that executed
● Other information (I.e. call-graph)

● May generate too much information. Filtering is required.
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Binaries Analysis

● Trace example
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Binaries Analysis

● Trace example (filtering by 0x42FA48)
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Binaries Analysis

● Which is the proper strategy to analyze an...
● “stripped” binary? (no symbols)
● obfuscated or packed binary?

● Code-coverage in dynamic analysis:
● how can we trigger every possible 

execution flow?
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Binaries Analysis

● Answer is on case-by-case basis and will probably 
involve a combination of different techniques
● Static analysis may require a high effort: too 

much information to analyze!
● Dynamic analysis based on debugging may 

require a high effort too
● Dynamic analysis based on monitoring tools 

may not be enough
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Question

Which approach would you use to analyze a 
binary that encrypts communications with a 

custom cryptographic algorithm?
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Lab 3.1

Analyze the binary, describe the logic and 
extract communicated data
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References

● https://github.com/cuckoosandbox/cuckoo

● The IDA Pro Book
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