
1Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Reverse Engineering
Class 3

Executable Binaries

2Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Static analysis based on the executable format
● Exported functions and variables
● Imported functions and variables
● Symbols and Strings tables
● Debug information

● But, not everything is exported and has
symbols!

3Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● When compiling and linking information is lost
● Function and variables names, comments
● Variables types
● Non exported functions location (static) and relocation

information
● Functions parameters
● This lost may be on purpose: strip a binary for release
● Compiling is a many-to-many operation

● Same assembly code, different source code (or
viceversa)

4Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Static analysis on executable code
● Disassembly heuristics
● Functions identification
● Function parameters identification
● Local and global variables identification
● “basic blocks” identification (function flow)
● Cross-references identification
● All of this can be automated!

5Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Disassembly heuristics
● Linear Sweep

● From a starting point (I.e. function
symbol, .text section start or binary entry
point) a linear disassembly is done
● Instructions and operands of variable

but known length (x86) or fixed length
(ARM)

● I.e. mov, add, push, etc.

6Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Disassembly heuristics
● Recursive Descent

● Conditional branching (if, while, for, switch)
● One branch is disassembled and the

other one is marked for future
disassemble

● Unconditional branching (jmp, call)
● Problem: is the jump target known?

7Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Disassembly heuristics
● Recursive Descent

● Unconditional branching (jmp, call)
● If we know it, disassemble the target. If

not, we have a problem.
● In a call we assume that a “return” to the

next instruction exists. Thus, next
address is marked as pending for future
disassembly.

8Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis
Entry point (known) in binary
stream

Variable (but known) length for
opcodes and operands on this
architecture

9Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

10Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

Where to continue disassembling? CALL to an address
held in a local variable, only known in run time

11Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● In CISC architectures like x86/x86_64 (with
extended instructions sets), many opcodes may
be valid.

● However, not every instruction is equally likely or
frequent. Executable binary type may provide
hints: are we expecting floating point instructions?

● Can we differentiate an executable binary
manually written in assembly from one generated
by a compiler? Can we identify idioms or
patterns?

12Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Compilers tend to use certain instructions more
frequently and generate specific patterns
following conventions or binary interfaces
(ABIs).

● It’s important to be able to make a judgment
about the correctness of a disassembly
● And provide a hint to the disassembler

regarding where to start.

13Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Where should we start disassembling?

14Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Does it look correct?

15Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Does it look correct? no

Rare instruction: ASCII
Adjust AX After Multiply

Compilers sometimes
do “silly” things but not
this much

16Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Does it look correct?

17Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Does it look correct?: yes

1st parameter for a call
(x86_64 ABI)

Call to a verifiable
function

Compares function
return value against -1

18Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● In previous examples we assume that binary is
not obfuscated / packed, and that is genuine
compiler assembly
● Use case example: DLLs or SYS modules

diffing from security patches
● When analyzing malware, these assumptions

may not be true
● Part of this is “training”

19Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Functions identification
● Exported functions
● CALL instructions targets
● Epilogues (ABIs)

● Functions parameters identification
● Calling conventions (I.e. x86 ABI) to determine

parameters count
● “mov” instructions for size

20Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Functions parameters identification
● Is up to the reverser to determine:

● Pointers meaning
● Structures

● When are their members written or
read? That provides semantic value.

● Data types
– I.e. are floating point operations applied on a

parameter?

21Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Calling conventions – Application Binary Interface (ABI)
● How is a function called at the assembly level?

● Send parameters (values, alignment, structures)
● Return address
● Return value
● Stack balance
● Which registers are saved? Who is responsible for that?

● A convention is needed: code generated by one compiler
may call libraries generated by a different compiler.

● These conventions depend on the CPU architecture and
the platform (Windows, Unix, etc.)

22Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

x86

23Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

x86

24Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Calling conventions x86
● Cdecl

● Caller function balances the stack (parameters
cleanup)

● Stdcall
● Callee function balances the stack (parameters

cleanup)
● Common in Windows API

● Fastcall
● Parameters by registers

25Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

int __stdcall function_a(int p1) { return ++p1; }

int __cdecl function_b(int p1) { return ++p1; }

int __fastcall function_c(int p1) { return ++p1; }

void main(void) {
printf("function_a: %d\n", function_a(0));
printf("function_b: %d\n", function_b(1));
printf("function_c: %d\n", function_c(2));

}

MSVC calling conventions

26Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

int __stdcall function_a(int p1) { return ++p1; }

main function

Parameter 1 pushed to the stack

function_a

Stack is not balanced,
callee did it

printf

function_a function

Callee balances the stack,
freeing up space used for the
parameter

27Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

int __cdecl function_b(int p1) { return ++p1; }

main function

Parameter 1 pushed to the stack

function_b

Stack is balanced,
freeing up space used
for the parameter

printf

function_b function

Callee does not balance the
stack

28Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

int __fastcall function_c(int p1) { return ++p1; }

main function

Parameter 1 loaded in a register

function_c

Stack remains balanced

printf

29Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Variables identification
● Similar to parameters identification
● Local variables are referenced (in x86) by

EBP - offset
● Compiler can reference them with ESP
● Can be held in registers, depending on

optimization levels
● Global variables are references to .data

(initialized) and .bss (uninitialized) segments

30Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

31Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

Basic blocks

32Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Cross references identification
● Based on offsets

● + symbols information
● + value (I.e. String)

● Bidirectional search
● Good strategy to understand what a function

does

33Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

34Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Patterns identification
● From assembly to source code

● A disassembler parses opcodes and
shows the instructions mnemonic.

● A decompiler makes high level
abstractions to show C code or pseudo-
code.

35Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

36Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

37Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Patterns identification

if (condition_1 && condition_2 … &&
condition_n) {

do;

}

38Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

39Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

40Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Patterns identification

while (condition_1) {
do;

}

41Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

42Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

43Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Patterns identification

 int max = 3;

 for (int i = 0; i < max; i++) {
 …

}

44Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

45Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

46Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Patterns identification

if (condition_1) {
goto error;

}

if (condition_2) {
goto error;

}

error:
return 0;

47Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

48Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

49Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Patterns identification

switch (variable) {
 case 0:

 ...

 break;

 case 1:

 ...

 break;

}

50Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

51Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

52Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Patterns identification

int (* f_ptr) () = f;

(* f_ptr) ();

53Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Dynamic analysis on executable code
● IDA Pro (debugger)
● Other debuggers

● Windbg, gdb, Ollydbg, etc.
● strace (Linux)
● API monitor (Windows)
● Wireshark

54Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Dynamic analysis on executable code
● Tools to monitor registry changes (Windows)
● Tools to monitor filesystem changes
● Integrated suite: Cuckoo

55Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Execution traces
● Do not stop execution (in opposition to braekpoints) and

record:
● Instructions execution
● Memory reads or writes

● From which instruction was memory accessed
● Other state changes (i.e. registers)
● Thread that executed
● Other information (I.e. call-graph)

● May generate too much information. Filtering is required.

56Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Trace example

57Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Trace example (filtering by 0x42FA48)

58Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Which is the proper strategy to analyze an...
● “stripped” binary? (no symbols)
● obfuscated or packed binary?

● Code-coverage in dynamic analysis:
● how can we trigger every possible

execution flow?

59Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binaries Analysis

● Answer is on case-by-case basis and will probably
involve a combination of different techniques
● Static analysis may require a high effort: too

much information to analyze!
● Dynamic analysis based on debugging may

require a high effort too
● Dynamic analysis based on monitoring tools

may not be enough

60Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Question

Which approach would you use to analyze a
binary that encrypts communications with a

custom cryptographic algorithm?

61Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab 3.1

Analyze the binary, describe the logic and
extract communicated data

62Reverse Engineering | Class 3 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

References

● https://github.com/cuckoosandbox/cuckoo

● The IDA Pro Book

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62

