
1Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Reverse Engineering
Class 4

Malware Analysis

2Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

WARNING

Executing real malware during dynamic
analysis has risks. An isolated environment is

recommended.

If an hypervisor is used, use the most updated
version and add as few peripherals as possible

(I.e. avoid 3D acceleration).

3Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Some generic techniques used by binary
malware will be seen in this class, from analysis
and development perspectives
● Each case is different (purpose and target)
● Not every malware is binary malware
● This area is constantly evolving: new APIs,

new functionality, new anti-virus (AV) and
detection heuristics

4Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Components
● Agent

● Executes operations in the attacked target
(endpoint): computing, data stealing, data hijacking,
etc.

● Different autonomy levels are possible
● Respond to commands interactively executed

(lightweight and generic agent)
● Operate autonomous using sophisticated data ex-

filtration techniques (intelligent and specific
agents)
● Avoid “noise” in both the endpoint and network

5Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Components
● Agent

● It desirable to be of small size and Position-
Independent-Code, to execute even when
injected into a process (so process memory
can be directly read)

● Exposed to anti-virus and to bring traces of
the attacker

● If binary, designed to target a specific
platform (operating system and architecture)

6Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Components
● Command and Control center (C&C)

● Consolidates commands and information from
different agents

● No exposure to anti-virus
● Communication channel

● Encrypted communications
● Covert-channels

● Agents and their C&C are usually called “botnet”

7Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Defense
● Prevention is complex: organizations need to

work on detection
● Defense solutions were traditionally focused

on fingerprint analysis (on endpoints or
network). Today that’s not enough

● Dynamic analysis or “user behavior” is
necessary

8Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● What are the pros and cons of a TCP/UDP/IP
communications channel from the C&C to the
agent?

9Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● TCP/UDP/IP to agent
● What’s the agent IP address? Does it

change? (dynamic IP) Is it behind a NAT? is
it an internal IP? Is there port-forwarding?

● A firewall can easily block a TCP connection
or an incoming UDP packet, unless it’s sent
to a known port of a known host

● A process has to be listening on a port (high,
if agent couldn’t elevate privileges) and that’s
suspicious

10Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● TCP/UDP/IP to agent
● Agent has to encrypt ex-filtrated data (avoid

suspicion to an IDS)
● Provides good bandwidth to ex-filtrate huge

amounts of data
● C&C has control to initialize and finalize the

channel. Agent does not need to be
continuously polling for reconnection

11Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● TCP/UDP/IP to agent
● Port knocking. If agent achieved privileges to

read raw data from the network interface, it
can sense for a key (example: sequence of
TPC SYNs to different ports). If key happens,
it hast to listen to the C&C on a certain port
● Avoid “always listening” to be stealthier

● C&C can change its IP address (to protect
the attacker)

12Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● What are the pros and cons of a TCP/UDP/IP
channel from the agent to the C&C?

13Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● TCP/UDP/IP to the C&C
● What’s the C&C IP address? How does the

agent know it? Is a DNS query needed?
● A fixed C&C IP address can easily make an

agent useless
● A DNS query can be suspicious (domains

blacklisting)
● Attacker can loose control over the domain

and make the botnet useless
● There is not enough flexibility for the C&C

14Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● TCP/UDP/IP to the C&C
● Advanced agents can search for headlines in

news and try to connect to a domain
combining those words

● Attacker registers the domain the same day
and connectivity is reestablished

15Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● TCP/UDP/IP to the C&C
● There are no issues with NAT if attacked

endpoint has Internet connectivity
● C&C can used a known port, generally

allowed for outgoing connections (I.e. 80,
443)
● However, a firewall with deep inspection

can find an unexpected protocol on a
known port and thus consider the traffic
suspicious

16Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● TCP/UDP/IP to the C&C
● Agent does not need to be always listening,

but decides when to establish the
connection. Continuously polling may be
suspicious

● Agent has to encrypt ex-filtrated data
● Channel with good bandwidth

17Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● What are the pros and cons of an HTTP/S,
DNS, ICMP or other covert-channels the agent
to the C&C?

18Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● HTTP/S, DNS, ICMP and other covert-channels
● Protocol abuse. I.e. malformed DNS queries
● Usually depend on an attacker domain

resolution (o are attached to a fixed IP address)
● Has all the advantages of being initialized as

outgoing traffic by the agent
● Usually allowed in firewalls and less suspicious

if implemented emulating human behavior (I.e.
be careful with transfers cadence)

● Less bandwidth

19Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Multi-staging / bootstrapping
● Malware is frequently deployed in multiple

stages
● Script that downloads a binary
● Exploiting payload (small size) that ends up

downloading a complete payload
● First stage can do some system profiling.

Example: previous infection, operating
system, architecture, etc. and take decisions
regarding how to get and load the next stage

20Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Multi-staging / bootstrapping
● May be interesting to avoid persistent traces:

only the bootstrapper is persisted and not the
agent (business?) logic

● Do not write the agent to the file system to
evade anti-virus
● Anti-virus install kernel hooks to detect file

system operations and act upon

21Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● The simplest strategy to start understanding a
malware is analyzing strings inside
● I.e. URL to the 2nd stage

● strings bin (Linux)
● Advanced malware does not expose strings

(data, imported functions symbols, etc.) nor
code in plain: they are encrypted or
obfuscated to avoid most basic static analysis
techniques

22Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Unpacking
● When execution begins, malware has to

unpack itself (bootstrapping)
● Totally or partially

● Execution starts at the unpacker, which uses
a key inside the binary or obtained from a
different source
● Trivial cryptography: only for obfuscation

and basic anti-virus/IDS fingerprinting
evasion

23Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

24Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

25Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

1. Unpacker begins execution (binary entry-point)

2. Unpacker allocates an executable memory
segment (write and, afterwards, execution
permissions)

3. Unpacker reads or gets the key and encrypted
bytes. After decryption, writes plain bytes in
previously allocated memory segment

4. Unpacker jumps to execute decrypted bytes

26Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Isn’t suspicious that a process allocates
memory, writes some bytes, changes
permissions to execution and jumps there?
What would make a legitimate use-case for
that?

27Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Isn’t suspicious that a process allocates
memory, writes some bytes, changes
permissions to execution and jumps there?
What would make a legitimate use-case for
that?

JIT compilers (OpenJDK, Flash, etc.)

28Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Encryption algorithm can be something as
simple as an XOR with the key or something
more advanced

● Agents can contain the same or different keys,
depending on how sophisticated they are

● It can fully or partially unpack, to make dumping
harder. Key can be obtained in run time and not
being persisted

● What are the challenges of developing malware
using these constraints? How to do it?

29Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Is it easy to…
● Develop a cryptographic machinery?
● Include a BLOB with encrypted bytes in a

binary?
● Allocate memory with execution

permissions?
● Decrypt bytes, write them in allocated

memory and jump to execute?
● Develop code to be packed as a BLOB?

30Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Is it easy to…
● Develop a cryptographic machinery?
● Include a BLOB with encrypted bytes in a

binary?
● Allocate memory with execution

permissions?
● Decrypt bytes, write them in allocated

memory and jump to execute?
● Develop code to be packed as a BLOB?

31Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Executable code (to be packed) has to be self-contained
like shellcode
● Why?

● We don’t want unpacked code to be in the file
system to evade anti-virus. Otherwise, we could
have a binary generated by a compiler and
normally load it

● Thus, there is no “loader” that automatically
resolves external libraries and do other tasks

● Fully loading an ELF or a PE is complex to
manually implement and would increase malware
size

32Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● We don’t want an IAT (Import Address Table) or
a GOT (Global Offset Table) with functions that
malware invokes because it would leak much
information about its behavior

● We can statically link all external functions
(glibc, in Linux) but would drastically increase
size

33Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Data and code are part of the same bytes
stream: there are no sections

● Code is PIC (Position-Independent-Code)
● Instruction pointer relative addressing mode
● Ready to execute no matter in which virtual

address is allocated or unpacked

34Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis
#include <stdio.h>
#include <sys/types.h>
#include <netinet/in.h>

extern int sockfd;

static int f ();

int main(){
sockfd = socket(AF_INET, SOCK_STREAM, 0);

int i = f();
...

}

35Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● It’s possible:
● Include headers and use constants
● Use local variables
● Use static functions and variables

● It’s not possible:
● Reference external global variables
● Call external functions (dynamically link

libraries)

36Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● If we follow these rules and compile PIC, .text
segment has “shellcode” bytes to pack
● We can develop malware in C (instead of

manually writing assembly) and it can be
easily packed

37Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 4.1

Compile shellcode and pack malware

38Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Functions resolution
● Calling OS APIs (instead of directly executing

syscalls) has advantages: high level
abstractions
● How many syscalls would be needed to

resolve a domain, or perform an HTTP
request?

● We could simply call getaddrinfo and curl
APIs

39Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Functions resolution
● How to resolve functions?

● Linux
● If libdl.so is mapped to the process:
● resolve dlsym reading the library memory (based on ELF

structure and base address available in
/proc/<PID>/maps)

● Use dlsym and dlopen to load libraries and resolve
symbols

● If dynamic loader is in the process, we can use it to
resolve functions

● We can implement our own resolver based on ELF
structure and process libraries base addresses

40Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 4.2

Resolve dlsym and, with dlsym, getaddrinfo

41Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Functions resolution
● Use libraries functions

● Windows
● Pointer to TIB (fs:0x30) → PEB
● Iterate modules (dlls) loaded in the process

until kernel32.dll is located
● Resolve GetProcAddress browsing memory

(PE structure)
● Use LoadLibrary to load libraries and

GetProcAddress to resolve symbols

42Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 4.3

Resolve kernel32.dll in Windows

43Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● PEB – Process Environment Block
● Undocumented structure, used by ntdll
● It’s loaded with some information provided by

the kernel
● Located in user-space (thus, the process can

read it)
● Has global information about the process: list

of loaded modules (PPEB_LDR_DATA), is the
process being debugged?, session ID,
parameters, etc.

44Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

typedef struct _PEB_LDR_DATA {
 BYTE Reserved1[8];
 PVOID Reserved2[3];
 LIST_ENTRY InMemoryOrderModuleList;
} PEB_LDR_DATA, *PPEB_LDR_DATA;

typedef struct _LDR_DATA_TABLE_ENTRY {
 ...
 PVOID DllBase;
 PVOID EntryPoint;
 PVOID Reserved3;
 UNICODE_STRING FullDllName;
 ...
} LDR_DATA_TABLE_ENTRY, *PLDR_DATA_TABLE_ENTRY;

45Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Malware does not like debuggers nor sandboxes
● IsDebuggerPresent (Windows API)

● “BeingDebugged” field in PEB
● Who is the parent process? Is there a debugger

(TracerPid) in /proc/<PID>/status? (Linux)
● Query physical resources (RAM, HDD, etc.). A

system with few resources may not be real
● Query drivers (Vendor IDs)
● System uptime (GetTickCount Windows API)

46Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Malware does not like debuggers nor sandboxes
● Benchmarking: how much time does it take to

perform a costly computation?
● Is there an emulated instruction? How much

does it take to execute?
● To measure time in x86/x86_64 the non-

privileged RDTSC (read timestamp)
instruction can be used
● An approximate timer with a parallel thread

decrementing a variable can be used

47Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Malware does not like debuggers nor sandboxes
● If malware detects that it is being debugged, it

may behave in a non-suspicious way
● Malware can remain in stand-by mode and

operate only under specific conditions
● Thus, fully automated tools have drawbacks

-particularly against the most advanced
malware-. Manual analysis and malware
patching to exhibit real behavior may be
necessary (and fun!)

48Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Tools to monitor filesystems, network traffic or
the registry may be complementary
● However, if malware encrypts network

communications or written files,
debugging/instrumenting may be necessary
to see data before encryption

49Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Fingerprinting limitations
● Packing (with different keys)

● It would be necessary to verify fingerprints
after unpacking and evade anti-debugging
techniques

● Polymorphism
– Suppose that malware needs to set EAX register

to 0. What can it do?

50Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Suppose that malware needs to set EAX
register to 0. What can it do?
● XOR EAX, EAX
● MOV EAX, $0
● SUB EAX
● Logic SHIFT
● Etc.

51Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Each instruction can be rewritten in different
ways keeping the same semantic value

● Innocuous instructions can be added in-
between (obfuscation)

52Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Other malware goals:
● Worming →infect targets nearby
● Privilege escalation - rootkit
● Persistence

● Init.d (Linux)
● Service (Windows)
● Windows Management Instrumentation

(WMI)
● Firmware / bootloader patching

53Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

Windows API Monitor

54Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab 4.1

Analyze Lab 4.1 malware (ELF, x86) and describe its
behavior

WARNING:

Execute inside a virtual machine only. Binary
performs REAL damage. Usage of snapshots is

recommended.

55Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

References

● https://www.virustotal.com
● https://github.com/ytisf/theZoo/tree/master/mal

wares

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

