Reverse Engineering
Class 4

Malware Analysis

martin.uy

# Open by default.

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA



Malware Analysis

WARNING

Executing real malware during dynamic
analysis has risks. An isolated environment Is

recommended.

If an hypervisor is used, use t
version and add as few periph
(l.e. avoid 3D accele

Reverse Engineering | Class 4 | Martin Balao | martin.uy/revers

ne most updated
erals as possible
ration).

e |v1.0 EN |CC BY-SA



Malware Analysis

 Some generic techniques used by binary
malware will be seen In this class, from analysis
and development perspectives

 Each case is different (purpose and target)
* Not every malware is binary malware

* This area Is constantly evolving: new APIs,
new functionality, new anti-virus (AV) and
detection heuristics

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 3



Malware Analysis

« Components
* Agent

» Executes operations in the attacked target
(endpoint): computing, data stealing, data hijacking,
etc.

 Different autonomy levels are possible

* Respond to commands interactively executed
(lightweight and generic agent)

* Operate autonomous using sophisticated data ex-
filtration techniques (intelligent and specific
agents)

* Avoid “noise” in both the endpoint and network

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 4



Malware Analysis

« Components
* Agent

* |t desirable to be of small size and Position-
Independent-Code, to execute even when
Injected into a process (S0 process memory

can be directly read)

* Exposed to anti-virus and to bring traces of
the attacker

* |f binary, designed to target a specific
platform (operating system and architecture)

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 5



Malware Analysis

« Components
 Command and Control center (C&C)

 Consolidates commands and information from
different agents

* NOo exposure to anti-virus
 Communication channel
* Encrypted communications
* Covert-channels
* Agents and their C&C are usually called “botnet”

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 6



Malware Analysis

e Defense

* Prevention is complex: organizations need to
work on detection

» Defense solutions were traditionally focused
on fingerprint analysis (on endpoints or
network). Today that’s not enough

* Dynamic analysis or “user behavior” is
necessary

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 7



Malware Analysis

 What are the pros and cons of a TCP/UDP/IP
communications channel from the C&C to the
agent?

@

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 8



Malware Analysis

« TCP/UDP/IP to agent

 What's the agent IP address? Does it
change? (dynamic IP) Is it behind a NAT? Is
it an internal IP? Is there port-forwarding?

» A firewall can easily block a TCP connection
or an incoming UDP packet, unless it's sent
to a known port of a known host

e A process has to be listening on a port (high,
If agent couldn’t elevate privileges) and that'’s
suspicious

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 9



Malware Analysis

« TCP/UDP/IP to agent

* Agent has to encrypt ex-filtrated data (avoid
suspicion to an IDS)

* Provides good bandwidth to ex-filtrate huge
amounts of data

 C&C has control to initialize and finalize the
channel. Agent does not need to be
continuously polling for reconnection

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 10



Malware Analysis

« TCP/UDP/IP to agent

* Port knocking. If agent achieved privileges to
read raw data from the network interface, it
can sense for a key (example: sequence of
TPC SYNs to different ports). If key happens,
it hast to listen to the C&C on a certain port

* Avoid “always listening” to be stealthier

 C&C can change its IP address (to protect
the attacker)

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 11



Malware Analysis

 What are the pros and cons of a TCP/UDP/IP
channel from the agent to the C&C?

@

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 12



Malware Analysis

« TCP/UDPI/IP to the C&C

« What's the C&C IP address? How does the
agent know 1t? Is a DNS query needed?

» Afixed C&C IP address can easily make an
agent useless

 ADNS query can be suspicious (domains
blacklisting)

o Attacker can loose control over the domain
and make the botnet useless

* There Is not enough flexiblility for the C&C

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 13



Malware Analysis

e TCP/UDPI/IP to the C&C

 Advanced agents can search for headlines In
news and try to connect to a domain
combining those words

» Attacker registers the domain the same day
and connectivity Is reestablished

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 14



Malware Analysis

« TCP/UDP/IP to the C&C

* There are no issues with NAT If attacked
endpoint has Internet connectivity

 C&C can used a known port, generally
allowed for outgoing connections (l.e. 80,

443)

 However, a firewall with deep inspection
can find an unexpected protocol on a
known port and thus consider the traffic

suspicious

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 15



Malware Analysis Jm

e TCP/UDPI/IP to the C&C

* Agent does not need to be always listening,
but decides when to establish the
connection. Continuously polling may be
suspicious

» Agent has to encrypt ex-filtrated data
« Channel with good bandwidth

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 16



Malware Analysis

 What are the pros and cons of an HTTP/S,
DNS, ICMP or other covert-channels the agent
to the C&C?

@

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 17



Malware Analysis

« HTTP/S, DNS, ICMP and other covert-channels

Protocol abuse. |.e. malformed DNS queries

Usually depend on an attacker domain
resolution (o are attached to a fixed IP address)

Has all the advantages of being initialized as
outgoing traffic by the agent

Usually allowed in firewalls and less suspicious
If implemented emulating human behavior (l.e.
be careful with transfers cadence)

Less bandwidth

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 18



Malware Analysis

* Multi-staging / bootstrapping

* Malware is frequently deployed in multiple
stages

o Script that downloads a binary

* Exploiting payload (small size) that ends up
downloading a complete payload

* First stage can do some system profiling.
Example: previous infection, operating
system, architecture, etc. and take decisions
regarding how to get and load the next stage

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 19



Malware Analysis

* Multi-staging / bootstrapping

 May be interesting to avoid persistent traces:
only the bootstrapper is persisted and not the
agent (business?) logic

* Do not write the agent to the file system to
evade anti-virus

* Anti-virus install kernel hooks to detect file
system operations and act upon

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 20



Malware Analysis

* The simplest strategy to start understanding a
malware Is analyzing strings inside

* |.e. URL to the 2nd stage
e strings bin (Linux)

* Advanced malware does not expose strings
(data, imported functions symbols, etc.) nor
code in plain: they are encrypted or
obfuscated to avoid most basic static analysis

techniques

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 21



Malware Analysis

» Unpacking
 When execution begins, malware has to
unpack itself (bootstrapping)
» Totally or partially

* Execution starts at the unpacker, which uses
a key inside the binary or obtained from a
different source

 Trivial cryptography: only for obfuscation
and basic anti-virus/IDS fingerprinting
evasion

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 22



Malware Analysis

Unpacker

Key

Encrypted bytes

Binary malware

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 23



Malware Analysis

Executable
memory
segment

\r

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Unpacker

Key

Encrypted bytes

Binary malware

24



Malware Analysis

1. Unpacker begins execution (binary entry-point)

2. Unpacker allocates an executable memory
segment (write and, afterwards, execution
permissions)

3. Unpacker reads or gets the key and encrypted
bytes. After decryption, writes plain bytes in
previously allocated memory segment

4. Unpacker jumps to execute decrypted bytes

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 25



Malware Analysis

* |sn’t suspicious that a process allocates

memory, writes some bytes, changes
permissions to execution and jumps there?
What would make a legitimate use-case for

that?

®

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 26



Malware Analysis

* |sn’t suspicious that a process allocates

memory, writes some bytes, changes
permissions to execution and jumps there?
What would make a legitimate use-case for

that?

JIT compilers (OpendDK, Flash, etc.) /

27

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA



Malware Analysis

* Encryption algorithm can be something as
simple as an XOR with the key or something
more advanced

* Agents can contain the same or different keys,
depending on how sophisticated they are

e |t can fully or partially unpack, to make dumping
harder. Key can be obtained in run time and not
being persistec

* What are the challenges of developing malware
using these constraints? How to do it?

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 28



Malware Analysis

* IS It easy to...
* Develop a cryptographic machinery?

* Include a BLOB with encrypted bytes in a
binary?

» Allocate memory with execution
permissions?

* Decrypt bytes, write them in allocated
memory and jump to execute?
* Develop code to be packed as a BLOB? @

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 29



Malware Analysis

* IS It easy to...

* Develop a cryptographic machinery? /

* Include a BLOB with encrypted bytes in a
binary?

» Allocate memory with execution
permissions? V

* Decrypt bytes, write them in allocated
memory and jump to execute? (

* Develop code to be packed as a BLOB? x

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 30



Malware Analysis

* Executable code (to be packed) has to be self-contained
like shellcode

 Why?

 We don’t want unpacked code to be in the file
system to evade anti-virus. Otherwise, we could

have a binary generated by a compiler and
normally load it

* Thus, there is no “loader” that automatically
resolves external libraries and do other tasks

* Fully loading an ELF or a PE Is complex to

manually implement and would increase malware
size

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 31



Malware Analysis

 We don’t want an IAT (Import Address Table) or
a GOT (Global Offset Table) with functions that
malware invokes because it would leak much
Information about its behavior

* We can statically link all external functions

(glibc, In Linux) but would drastically increase
size

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 32



Malware Analysis

 Data and code are part of the same bytes
stream: there are no sections

* Code is PIC (Position-Independent-Code)

* |nstruction pointer relative addressing mode

 Ready to execute no matter in which virtual
address is allocated or unpacked

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 33



Malware Analysis

#include <stdio.h>
#include <sys/types.h> (
#include <netinet/in.h>

extern int sockfd:; x

static int f ();
Int main(){ ( l (

sockfd = socket(AF_INET, SOCK_STREAM, 0);

X
inti:y
}

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse |v1.0 EN | CC BY-SA 34




Malware Analysis

* |t's possible:
* Include headers and use constants
 Use local variables
e Use static functions and variables
* |t's not possible:
» Reference external global variables

» Call external functions (dynamically link
libraries)

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 35



Malware Analysis

* |f we follow these rules and compile PIC, .text

segment has “s
 We can deve

nellcode” bytes to pack

op malware in C (instead of

manually writing assembly) and it can be
easily packed

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 36



Demo 4.1

Compile shellcode and pack malware

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 37



Malware Analysis

e Functions resolution

» Calling OS APIs (instead of directly executing
syscalls) has advantages: high level
abstractions

 How many syscalls would be needed to
resolve a domain, or perform an HTTP
request?

* We could simply call getaddrinfo and curl
APIs

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 38



Malware Analysis

e Functions resolution
 How to resolve functions?
e Linux
o If libdl.so Is mapped to the process:

 resolve disym reading the library memory (based on ELF
structure and base address available in
/proc/<PID>/maps)

« Use dlsym and dlopen to load libraries and resolve
symbols

* If dynamic loader is in the process, we can use it to
resolve functions

* We can implement our own resolver based on ELF
structure and process libraries base addresses

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 39



Demo 4.2

Resolve disym and, with disym, getaddrinfo

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 40



Malware Analysis

* Functions resolution
» Use libraries functions
* Windows
» Pointerto TIB (fs:0x30) - PEB

* |terate modules (dlls) loaded in the process
until kernel32.dll is located

* Resolve GetProcAddress browsing memory
(PE structure)

» Use LoadLibrary to load libraries and
GetProcAddress to resolve symbols

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 41



Demo 4.3

Resolve kernel32.dll in Windows

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 42



Malware Analysis

« PEB — Process Environment Block
* Undocumented structure, used by ntdll

* |t's loaded with some information provided by
the kernel

* | ocated In user-space (thus, the process can
read It)

* Has global information about the process: list
of loaded modules (PPEB_LDR_DATA), Is the
process being debugged?, session ID,
parameters, etc.

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 43



Malware Analysis

typedef struct PEB LDR_DATA {

BYTE Reservedl[8];

PVOID Reserved?2[3];

LIST_ENTRY InMemoryOrderModuleL.ist;
} PEB _LDR_DATA, *PPEB_LDR_DATA;

typedef struct LDR_DATA TABLE ENTRY {
PVOID DlIBase:
PVOID EntryPoint;
PVOID Reserved3;
UNICODE_STRING FullDIIName;

} LDR_DATA TABLE ENTRY, *PLDR DATA TABLE ENTRY;

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 44



Malware Analysis

 Malware does not like debuggers nor sandboxes
» |sDebuggerPresent (Windows API)
» “BeingDebugged” field in PEB

* Who Is the parent process? Is there a debugger
(TracerPid) in /proc/<PID>/status? (Linux)

* Query physical resources (RAM, HDD, etc.). A
system with few resources may not be real

* Query drivers (Vendor IDs)
» System uptime (GetTickCount Windows API)

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 45



Malware Analysis

 Malware does not like debuggers nor sandboxes

 Benchmarking: how much time does it take to
perform a costly computation?

e |s there an emulated instruction? How much
does it take to execute?

 To measure time in Xx86/x86 64 the non-
privileged RDTSC (read timestamp)
Instruction can be used

* An approximate timer with a parallel thread
decrementing a variable can be used

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 46



Malware Analysis

* Malware does not like debuggers nor sandboxes

 |f malware detects that it is being debugged, it
may behave In a non-suspicious way

 Malware can remain in stand-by mode and
operate only under specific conditions

* Thus, fully automated tools have drawbacks
-particularly against the most advanced
malware-. Manual analysis and malware
patching to exhibit real behavior may be
necessary (and fun!)

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 47



Malware Analysis

* Tools to monitor filesystems, network traffic or
the registry may be complementary

 However, If malware encrypts network
communications or written files,
debugging/instrumenting may be necessary
to see data before encryption

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 48



Malware Analysis

* Fingerprinting limitations
« Packing (with different keys)

* |t would be necessary to verify fingerprints
after unpacking and evade anti-debugging
techniques

* Polymorphism
- Suppose that malware needs to set EAX register

to 0. What can it do? a

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 49



Malware Analysis

e Suppose that malware needs to set EAX
register to 0. What can it do?

« XOR EAX, EAX
« MOV EAX, $0

« SUB EAX

* Logic SHIFT

e Efc.

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 50



Malware Analysis

* Each instruction can be rewritten in different
ways keeping the same semantic value

 |[nnocuous Instructions can be added In-
between (obfuscation)

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 51



Malware Analysis

e Other malware goals:
 Worming - infect targets nearby
* Privilege escalation - rootkit
* Persistence
* |nit.d (Linux)
» Service (Windows)

* Windows Management Instrumentation
(WMI)

 Firmware / bootloader patching

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 52



Malware Analysis

[& API Monitor v2 (Alp
File Edit View Tools Help

i) G el | ¥ By @ |

']
| ] | summary: 27096 cails -
£ [ X 84 [anmodules =] i #H o>
=~ [ NT Native - & C\Program Files (x86)\Internet Exploren\j | & D Module APL Q, Return Error -
] Client-Server (CSR) ¢\Network Utilities\SecureCRI\SECUreCR | 5oa31  ga15  KERNELBASEI  RellnitizlizeCriticalSectionAndSpinCount (000701230, 4000 STATUS_SUCCESS
[1] pebugging (DEG) o0 C\Programming\Microsoft Visual Studid| 5a35 8316 KERMELBASE.dIl  RllnitizlizeCriticalSectionAndSpinCount [ 0:00700ab¢, 4000 ) STATUS_SUCCESS
[l toader itoR) -l c\windows\SysWOWsd\emd.exe (Termin| 55533 8816 procexp.exe CreateFiled ( "e:\Utilities\procexp64.exe”, GENERIC_WHRITE, RILE_SHARE_READ | FILE_SHAR... INVALID_HANDLE_VALUE 5 = Access is denied.
] [J] Runtime Library Routines (RTL) ! {M] Thread 13772 (emd. exe+0x8294) 26834 8616  kemel3Z.dll -~ REINitANsiStringEx { 0x00302 Utilities\procexp6s, ess=1 TATLIS S1JCCESS
[3 ntdil.dil - eUtilities\procexp.exe (Terminated) || 25835 8816 KERMELBASE.dII - RtlAnsiStringToUnicodeString ( 030030254, 0x003023¢, C”_-‘:Emi‘l‘i-‘gé\ rocexmBA. exe" CCESS
m- m Office Development F JE Thread 8816 [procexp.exe+0x4EB0Z) || 26836 8816 kernel32.dll - RtlInitUnicodeStringEx [ 0x0030f224 \Utilities\procexy GéNERIC W‘IJRII'E, Lt ’ CCESS
-1 [l security 26837 8816  KERNELBASE.dIl - BtlInitUnicodeStringEx ( 0x00301 d2, “en\Utilities\procexy|  FILE_SHARE_READ | FILE_SHARE_WRITE, JCCESS
- [m] [l system Services 26838 | 8816 | KERNELBASE.dIl NtCreateFile [ 0x003071f8, GENERIC_WRITE | SYNCHRONI] CCIESAB'F?:E‘;\I’AYS 0xc0000022 = {Access Denied}...
-1 [ Device Services 26839 8816  KERNELBASE.dl -RtIFreeHeap (0x00710000, 0, 0x00775225 ) FILE_ATTRIBUTE NORMAL
-7 [l DLLs, Processes, and Threads 26840 8816  KERMELBASE.dII -RtlFreeHeap (0x00710000, 0, NULL ) MULL
& []] File serviees E 26841 8816  KERNELBASE.dl - RtINtStatusToDosErrar [ STATUS_ACCESS_DENIED ) I3
D m Backup 26842 8816 kernel32.dll - RtIFreeUnicodeString [ 0x0030f254 )
E||i| m Local File Systems 26843 8816  procexp.exe GetFileAttributesd [ enUtilities\procexp6d.exe”) FILE_ATTRIEUTE_ARCHIVE | FILE_A...
I ibAR SISt (000501 0, -6 Utilties! e
|:| m Directory Management 26844 3816 KERMELBASE.dI RtlInitAnsiStringEx | 0x0030f3d0, "enUtilities\procexp64.exe” ) STATUS_SUCCESS
) 26845 8616  KERNELBASE.dII - RtlAnsistringToUnicodeString ( 3¢8, 0x00303d0, TRUE ) STATUS_SUCCESS
-] [J] Disk Management Attri i i
& [l Fie . 4 26846 8816  KERNELBASE.dl - NtQueryAttributesFile { 0x003073b 0f390) STATUS_SUCCESS o
& e Managemen « m v || 26847 8616 KERNELBASEIl  -RtlFrecHeap (0x00710000, 0, 0 TRUE -
[ Advapi32.dlil
[ Kernel32.dll
=] [ L32.an # Type Name Pre-Call Value [ Post-Call Value =M™ FEEW R | Elz
[ [£] GetExpandediiameA 1 PHANDLE [ ¢ FileHandle 0x0030f18 = NULL 0x003018 = NULL 0000 Se 00 3f 00 P
L 2 GetbxpandedNameW || 5, ceoq asy & DesiredAccess GENERIC_WRITE | SYNCHRONIZE | 128 GENERIC_WRITE | SYNCHROMNIZE | 128 = ggf: 22 gg 2: gg
3 POBJECT_ATTRIBUTES = @ ObjectAttributes 0x0030f19¢ 0x0030f19¢ ||| 0o1e 73 00 5 00
2 OBJECT_ATTRIBUTES = ¢ {Length = 24, RootDirectory = NULL, ObjectName .. { Length = 24, RaotDirectary = NULL, ObjectNam... S
ULONG @ Length 24 24 003c 00 00 .
Process i PID o HAMDLE @ RootDirectory MULL MULL
MSOSYNC.EXE 2068 PUNICODE_STRING = ¢ ObjectName 0x0030fLd3 0x0030f1da
ONENOTEM.EXE 2656 UMNICODE_STRING = 9 { Length = 80, MaximumLength = 538, Buffer = Ox.. | Length = 80, MaximumLength = 538, Buffer=10
OUTLOOK EXE 3712 USHORT @ Length 60 60 i il
SearchProtocolHost.exe 12716 T
SecureCRT.exe 7792 _Ill# Module Address Offset Location procexp.exe: Hooked Module 0x75DC0O000 -> C:\Windowshsyswow&4\USP1l0.dll. -
3 X procexp.exe: Hooked Module 0x7€0C0000 -> C:\Windows'syswow&4\LPE.d4ll.
Skype.exe 8432 1 KERMELBASEMIl  0x74f3b634 0x1b634 CreateFileW = 0:35¢ procexp.exe: Hooked Module 0x766D0000 —> C:\Windows'syswows4)SHLWAPI d411.
2, M 9968 2 kemel32.dll 0x763b3fak Oxl3fab CreateFileW + Oxda procexp.exe: Hooked Module 0x76860000 —-> C:i\Windows‘\syswow&4\COMDLG3Z.dll.
<% skypePM.exe 3 kemeB2.dil 0x763b53f¢ 0x153fc CreateFiled + 0336 procexp.exe: Hooked Module 0x75170000 -> C:\Windows\syswow64)SHELL3Z .d1l. 3
B snagiszexe 12332 procexp.exe: Hocked Module 0x73010000 —> C:\Windows\system32\VERSION.d1l.
procexp.exe: Hooked Meodule 0x75EC0000 -> C:\Windows\syswow&4\MSCTF.dll. s
i)l snagiteditor.exe 12232 il o — | 3
5] Processes I S Services (5 API Loader I@Hmlﬁ I = output
Ready 24,22 MB Mode: Standard

Windows API Monitor

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse |v1.0 EN | CC BY-SA 53



Lab 4.1

Analyze Lab 4.1 malware (ELF, x86) and describe its
behavior

WARNING:

Execute inside a virtual machine only. Binary
performs REAL damage. Usage of snapshots Is

recommended.

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 54



References

nttps://www.virustotal.com

nttps://github.com/ytisf/theZoo/tree/master/mal
wares

Reverse Engineering | Class 4 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 55



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55

