Reverse Engineering
Class 5

Malware Analysis

martin.uy

Open by default.

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

File Options View Help

Applications | Processes | Services | Performance | Networking | Users

Image Narru; User Mame CPU Memary (Private Waorking Set) Command Line

gudiodg.exe LOCAL,,., 00 9,940 K

omd.exe martin 00 1,708 K "C:\Windows\System32\ond. exe”™

conhost,exe martin ao 1,336 K \W\C:\Windows\system32'\conhost.exe “-7065135621041986533-9430632736629366301535311252-112...,
conhost,exe martin 0o 1,220 K WAC\Windowslsystem3Z\conhost. exe ™491574450166 79167 29-77065642315185339541424476 118-17...
CSM55,EXE SYSTEM 0o 1,243 K %uSystemRoot®isystem32'csrss.exe ObjectDirectory =\Windows SharedSection=1024, 20480, 763 Windo...
CSrss,eXg SYSTEM 00 1,304K %hSystemRoot%\system32\cerss.exe ObjectDirectory=Windows SharedSection=1024, 20480, 768 Windo...
dwm.exe martin 00 93,280 K "C:\Windows'system32\Dwm.exe”

explorer,exe martin 0o 26,320 K C\Windows'\Explorer EXE

idag.exe *32 martin 0o 98,700 K "C:\Program Files (x88)YDA 6.95Ydag.exe”

lzass,exe SYSTEM 00 3,288 K C:\Windows'\system32\|sass.exe

|sm. exe SYSTEM 00 856 K C:\Windows'system32\sm.exe

malware.exe *32 martin ao 408K malware.exe

Microsoft,VsHub,Serv... martin 0o 28,376 K "C:\Program Files (x88)Common Files\Microsoft SharediysHub'1.0.0.0'Microsoft, YsHub, Server HttpHost. ...
MpCmdRun.exe METWO... 00 2,408 K “c:\program flles\windows defender \MpCmdRun.exe” SpyNetService -RestrictPrivileges - 2B453...
msdtc.exg METWO... 00 1,086 K C:\Windows\System32\msdtc.exe

nfsd.exe SYSTEM 0o 8,648 K C\Usersimartin\Programsims-nfs41-dient-x64\nfsd.exe

Something odd?

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 2

Malware Analysis

* Process injection
 Hide and evade audit logs

* Bypass endpoint firewalls with application
filtering

« Steal information from the injected process

 Change session (non-interactive session -
Interactive session)

e Screenshots

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 3

Malware Analysis

Injector

$

|

Target

$ 43

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

Injector

$

R

Target

$ %4

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

» Goals
 Move malicious code to the target process

* Create a new thread in the target process
that executes malicious code

* Avoid interruptions or data corruption in the
target process (process continuation)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 6

Malware Analysis

* Process injection technigues (Windows)

e CreateRemoteThread .-

* Asynchronous Procedure Call .-

* Debugging API

* Process injection technigues (Linux)
* Debugging API (ptrace)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 7

Malware Analysis

» CreateRemoteThread (Windows)
 OpenProcess
* Handle to manage a remote process
 VirtualAllocEx
» Allocate memory to the remote process

* Write and execution permissions

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 8

Malware Analysis

» CreateRemoteThread (Windows)
* WriteProcessMemory
 \Write remote process memory
» Malicious code to inject
 CreateRemoteThread

* Create a new thread Iin the remote process
and make It execute previously written
memory

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 9

Demo 5.1

Process injection with CreateRemoteThread
(Windows)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 10

Malware Analysis

* Asynchronous Procedure Call (Windows)

* Windows API to gqueue asynchronous calls to
threads

 When thread Is in “alertable” state (l.e.
sleeping), it will handle the call

o Call is to an arbitrary process address,
chosen by the one who enqueues it

 \When call ends, thread context Is
automatically restored

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 11

Malware Analysis

* Asynchronous Procedure Call (Windows)

* A handle to the victim process and to a
thread In it are obtained: OpenProcess,
CreateToolhelp32Snapshot, OpenThread

 Memory Is allocated in the process and

executable code is written: VirtualAllocEx y
WriteProcessMemory

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

12

Malware Analysis

* Asynchronous Procedure Call (Windows)

 An APC call is enqueued with
QueueUserAPC

* |t's Important that injected code creates a
new thread to continue execution: thread that
handles the APC has to return to its normal

execution

o If an application thread is definitely
iInterrupted, instability may be caused

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 13

Malware Analysis

 Debugging API (Windows)

» Allocate memory and write code Iinto the
target process (remotely)

* Debug the target process
* Debugger Is attached to a thread

* DebugActiveProcess /
WaitForDebugEvent / ContinueDebugEvent

« Save the attached thread context (l.e. save
registers values in the injector process)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 14

Malware Analysis

* Debugging API (Windows)

» Attached thread Is set to execute injected
code

A new thread has to be created at the
beginning of the injected code

» Control returns to debugger and the attached
thread original context is restored

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 15

Malware Analysis

* Process injection in Linux

« Similar to the technigue described for
Windows

* Debugging API in Linux (Unix): ptrace
 Read / write the thread context (registers)
 Read / write process memory

 Intercept every signal to the debugged
process

* Run the process step-by-step

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 16

Malware Analysis

* Process injection in Linux
* Problem:

* |t's not possible to remotely allocate
memory to a process

* |t's not possible to remotely create a
thread on a process

» Solution: /
* Hijack a thread and make it do it on our

behalf

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 17

Malware Analysis Jm

e Some ptrace primitives
« PTRACE ATTACH
 PTRACE PEEKDATA
« PTRACE_POKEDATA
« PTRACE_SYSCALL
« PTRACE _CONT
 PTRACE_GETREGS
 PTRACE_SETREGS

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 18

Malware Analysis

* Process injection in Linux
» Attach to the target process

 Resolve mmap and __ clone virtual
addresses (libc)

 Libc base in /proc/<PID>/maps
* Resolution reading memory (ELF format)

* Workaround: resolve offset with dlsym and
dladdr inside the injector and use it on the
Injected process

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 19

Malware Analysis

* Process injection in Linux

e Save attached thread context to restore it at
the end of injection

» Values are saved on the injector memory

* \We want the injected process to continue
execution normally

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 20

Malware Analysis

* Process injection in Linux
* Modify attached thread context (hijacking):
* RIP - mmap/ _clone address

* Other registers — function parameters
(according to x86_64 ABI)

* Modify stack: 16 bytes alignment (ABI)
and return address = 0x0

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 21

Malware Analysis

* Process injection in Linux

* Continue the process and let the called function
execute. When returning, instruction at address 0x0
will be executed and a signal sent to the process
(invalid address)

* Given that the injector is a debugger, receives the
signal first and can handle it

» Signal is discarded, instead of forwarding it to
the debugged process

* Modify the attached thread context to execute
another function or restore it to continue normal
execution

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 22

Malware Analysis

* Process injection in Linux
* Function calls in the remote process:

» Allocate memory for the executable buffer
(Injected Instructions), with mmap

* Allocate memory for the stack of the
thread that is going to execute the injected
buffer, with mmayp

* Create a new thread, with __ clone

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 23

Malware Analysis

* Process injection in Linux

* How registers or memory have to be set for
each call?

* Application Binary Interface (ABI),
according to the architecture

* Tip: debug a simple example that uses libc
APl and follow it until syscall is executed

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 24

Demo 5.2

Process injection with ptrace (Linux)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 25

Malware Analysis

 Limits of previous techniques
o Security model in Windows

» Access Token — object that describes the security context
of a process or thread (GetTokenlnformation)

* When user logs into the system, an access token is
assigned. Every process that the user executes have
this token

« Contains user account identity and its groups: SIDs
(Security ldentifiers)

» Contains privileges for administrative tasks (l.e. reboot
the system, change date, load drivers, etc.)

* One thread may eventually impersonate a different user
and use its access token

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 26

Malware Analysis

* Limits of previous techniques
e Security model in Windows

o Security Descriptors: security information
associated to each Securable Object

* Owner and primary group

» DACL — discretionary access (access to
specific users or groups)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 27

Malware Analysis

(: Process or Thread)

C

Object)

Security descriptor

Image from https://msdn.microsoft.com/en-us/library/windows/desktop/aa378890(v=vs.85).aspx

Access token
® Owner SID
® UsersiD ® Group SID
* Group SIDs * sSACL
* Privilege information DACL
¢ Other access information
» ACE
The system checks each ACE in <'f
the DACL until access is granted - ACE
or denied, or until there are no 1
more ACEs. If the shaded ACE (
™ ACE
resolves the access-control
guestion, the system does not
check the last ACE. ACE

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 28

Getting process token {OpenProcessToken):
APPNOBAS

Getting process token session ID (GetTokenInformation — TokenSessionId):

Getting process token user (GetTokenInformation - TokenUser):
token_user.User.S51d: BO4B3EAS
S-1-5-21-2496531130-4708213764-2444830404-1001

Getting process token user (GetTokenInformation - TokenPrivileges):
Privileges count: 5

Not elevated

privilege name:
privilege name:
privilege name:

SeShutdownPrivilege
SeChangeNotifyPrivilege
SelUndockPrivilege

privilege_name: SelncreasellorkingSetPrivilege
privilege name: SeTimefonePrivilege

BEM Administrator: cnd 84 - admi

Getting process token {OpenProcessToken):
A0A00048

Getting process token session ID (GetTokenInformation - TokenSessionId):

Getting process token user (GetTokenInformation - TokenlUser}:
token_user .User.5id: 004B1280
S-1-5-21-2496531130-470213764-2444830404-1001

Getting process token user {GetTokenInformation - TokenPrivileges):

Privileges count: 23

privilege name:
privilege_name:
privilege_name:
privilege_name:
privilege name:
privilege name:
privilege name:
privilege_name:
privilege_name:
privilege_name:
privilege_name:
privilege name:
privilege name:
privilege_name:
privilege_name:
privilege_name:
privilege_name:
privilege name:

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SelncreaseQuotaPrivilege
SeSecurityPrivilege
SeTakeOwnershipPrivilege
SeLoadDriverPrivilege
SeSvystemProfilePrivilege
SeSvystemtimePrivilege
SeProfileSingleProcessPrivilege
SelncreaseBasePriorityPrivilege
SeCreatePagefilePrivilege
SeBackupPrivilege
SeRestorePrivilege
SeShutdownPrivilege
SeDebugPrivilege
SeSystemEnvironmentPrivilege
SeChangeNotifyPrivilege
SeRemoteShutdownPrivilege
SeUndockPrivilege
SeManageVolumePrivilege

Elevated

29

ds

lac

nts

.k1
ab

Malware Analysis

o, Users (WinVMWork'\Users) Advanced Secunty Settings for user32.dll
52, TrustedInstaller

Pemissions | Auditing | Owner | Effective Permissions

To change permissions, click Edi. | Hy) Edit... You can take or assign ownership of this object f you have the required pemissions or prix
Pemissions for SYSTEM Allow Dermy

Full control Object name: C A \Windows"System 32 wuser32 dil

Moy Current owner:

2::3 & execute :: TrustedInstaller

White

Special pemissions Moo

For special pemissions or advanced settings, I Advanced I ;,- mirtin (Win'/MWor\martin)

click Advanced.

A Administrator: cmdb4d - admin l =N =] |£

Getting user32.dl]l securable object information {GetNamedSecurityInfo — OWNER_SE
CURITY INFORMATION) :

token_user.User.51d: O00883EEC
5-1-5-80-956008885-3418522649-1831038044-1853292631-22 114 18464

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 30

Malware Analysis

» To invoke OpenProcess and other debugging APIs in a
process from a different user, “SeDebugPrivilege” privilege
has to be enabled in the Access Token

* Only administrative accounts should have this privilege
available to be enabled

* To debug processes from the same user this privilege is
not needed

 From a defensive point of view, this remarks the
Importance of not executing with administrative accounts
or, in that case, impersonate non-privileged users

* Model brings granularity to assign non-privileged
accounts the privileges needed (least privilege principle)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 31

Malware Analysis

* Limits of previous techniques
e Security model in Linux

» Before kernel 2.2, security model
consisted of privileged and non-privileged.
A privileged process had unrestricted
control of the whole system

» Some software legitimately requires
privileges. In example, a DNS server has
to listen incoming connections in a low

port (53)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 32

Malware Analysis

* Limits of previous techniques
» Security model in Linux

» Under the assumption that the process might
be exploited, damage mitigation Is needed

* “Capabilities” bring privilege granularity to
processes

« “Capabilities” are associated to executable
binaries.

» A process that drops “capabillities” in run
time, cannot re-acquire them later

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 33

Malware Analysis

[martin@vmlinwork 5]1% ./run.sh
[sudo] password for martin:
./bin/main = cap net raw+ep
Start

Creating socket...

socket fd: 3

Dropping CAP NET RAW capability

Creating socket...

Socket couldn't be created

Trying to re-acquire CAP NET RAW capability

Capability couldn't be re-acquired. Error: Operation not permitted
Finished

#include <linux/capability.h> cap_get_proc(...);

#include <sys/capability.h> cap_set _flag(...);
cap_set proc(...);

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 34

Malware Analysis

* Limits of previous techniques
e Security model in Linux

* To arbitrary debug processes (from
different users), CAP_SYS PTRACE
capabillity Is required

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 35

Malware Analysis

* Analyzing external libraries and functions that
malware uses may give an idea of its behavior

 |.e If debugging APls are used, Iit’s likely that
the malware has process injection
capabllities

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 36

== Malware Analysis

» Getting familiar with DLLs in Windows
» Kernel32.dll

 Base DLL. Memory, files and hardware
management. Imported by every executable
binary

* Advapi32.dll
» Access to Service Manager and Registry
« User32.dll

» Graphic interface components (buttons, scroll
bars, text areas, etc.)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 37

== Malware Analysis

o Getting familiar with DLLs in Windows
e Gdi32.dll

* Graphics management. User space library. Win32k.sys In
kernel

 WSock32.dll, Ws2_32.dIl y Wininet.dll
* Networking libraries (sockets, HTTP connections, etc.)
e Msvcrt.dll

e C/C++ runtime. Abstraction layer on top of Windows API.
Memory allocation, files, strings, etc.

 Ntdll.dll

* Not documented but present in every process. Interface to
kernel

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 38

User Application

'

Kernel32 dll

'

Ntdll.dll

User Mode
Kernel Mode
Ntoskrml.exe

'

Kernel Data Structures

Figure 7-3: User mode and kernel mode
Image from “Practical Malware Analysis: The

mm Malware Analysis

Ntdll.dll is interesting because it

Includes:

» Kernel structures

e Not documented APIs, that
enable extra functionality (or
high level APIs restrictions
bypassing)

« Avoid importing “suspicious”
functions

Malware can eventually execute
direct kernel syscalls, based on

what ntdll.dll does (syscalls are

not documented)

Hands-On Guide to Dissecting Malicious Software”
Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 39

== Malware Analysis

 How does a keylogger work?
* Challenge: mange a huge amount of data

« API| SetWindowsHo0OkEX

 Malware installs a hook (callback) for a specific
event

* |n case of a keylogger, that event Is
WH_KEYBOARD LL

* Hooks can be global or thread-specific

* This technique can be used to inject DLLs In
processes: callback (implemented in a DLL) Is
called in the context of the process that generates

the event

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 40

== Malware Analysis

 How does a keylogger work?
e Limits
 Discretionary security (per user or group) is not enough:
what happens if a malware downloaded from the

Internet gets executed by an administrative user? What
happens If the Internet browser is remotely exploited?

 Mandatory security: securable objects and processes
have an assigned integrity level

* A low integrity process cannot read or write a high
Integrity object

* Alow Iintegrity process cannot install a keylogger
hook

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 41

== Malware Analysis

e COM — Component Object Model
* Object oriented communication framework

 Communication within the same process, between
processes or between processes on distributed
hosts (DCOM)

* Bindings for different languages. Example: from
VBAScript a function on a DLL (developed in C++)
can be invoked

» Used by Internet Explorer and Microsoft Office
among others

 Parameters marshalling. Data types normalization.
Objects reference counting

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 42

== Malware Analysis

e COM — Component Object Model

« Stable ABI, independent from the language
and compiler

 Communication happens on top of low
level mechanisms

* In example, DCOM can use SMB and
TCP/IP as transport

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 43

== Malware Analysis

« COM - Component Object Model
* Works in client-server mode

» Server exposes an object (reusable component)
to be used by different clients

* Object implements one or more interfaces
(IIDs). l.e. IWebBrowser2. Object concrete
Implementation (class, identified by a CLSID)
can be a DLL or an executable binary. l.e.
Internet Explorer

* Client consumes services offered by the object
calling its methods or properties

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 44

== Malware Analysis

« COM - Component Object Model

* A client locates an object published in the
Registry

 Interfaces and classes are identified by GUIDs
(unique numbers 128 bits long)

e« HKLM\SOFTWARE\Classes\CLSID\ and
HKCU\SOFTWARE\Classes\CLSID

e Olelnitialize, ColnitializeEx, CoCreatelnstance

« COM is implemented in DLLs like Ole32.dll,
Oleauto32.dll and technologies like ActiveX

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 45

== Malware Analysis

e COM — Component Object Model

 Methods always return HRESULT to indicate the
result of the call

» Return values go through pointer parameters.
Parameter types are specified with [IN] and [OUT] In
documentation

* An object always implements IlUnknown interface.
This interface allows to:

* Modify the object reference counter (AddRef,
Release)

» ODbtain pointers to other interfaces implemented by
the object (“casting”)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 46

mou

eds, [ebp+tbstritring -

iu5h edx

311 mov edx, [ebp+var 4]
push edx
mou edx, [ecx+ZCh
mou [ebp+uvar 18], eaX
" mn rehn+uayr 101 A

Malware Analysis

EAXO02F5AF8
EBX7EFDE0O0O
ECX6CD01D74
EDX0094474cC
ESI00148DO0C
EDI00148D10
EBP O004ACFECS
ESP004CFE%4
ETP001310F2
EFL00000246

IWebBrowser2* pObjBrowser2;

CoCreatelnstance(...);

pODbjBrowser2->Navigate();

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

£ £ £ £ £ £ £ ¥ ¥

debug036: 002F5AF8
debugl50: 7EFDEO0O0O
leproxy:ieproxy D1
debugl62:0094474C
.data:dword 148DO0C
.data:dword 148D10
debug045: 004CFECS
debug045:004CFE94
_main+F2

47

== Malware Analysis ﬁ

‘Eﬂx O02F5AF8 + debug036:002F5AFS8
EAX = pointer to the object (heap)

In the first bytes of the object memory there
IS a pointer to the class vtable.

vtable Is a table of pointers to the
Implementation of class methods.

After vtable pointer, object attributes are
located.

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 48

Malware Analysis

ECX6CD01D74 +» iepréxy:ieprnxy;pl]

ECX = pointer to object’s class vtable
(IWebBrowser?2 interface)

6CD01D74
6CD01D78
6CD0O1D7C
6CD01D80
6CD01D84
6CD01D88
6CD01D8C
6CD01D90
6CD01D9%4
6CD01D98
6CD01DSC
6CDO1DAO

F ol L s T

ieproxy:
6CDOAGF0 1leproxy
6CD0O01F70 1ieproxy
6CDOASDO 1eproxy
6CDOAS8B0 1eproxy
6CDOABEO 1eproxy
6CDOAB20 1i1eproxy
6CDOAA20 1eproxy
6CDOAAG6DO 1eproxy
6CDOAAAD 1eproxy
6CDOAAEO 1eproxy
6CDOAB8B0 1leproxy

ol L T T B T T

leproxy DllGetClassObject+4760

-1eproxy GetProxyDllInfo+2160
-1eproxy DllGetClassObject+3820
-1eproxy GetProxyDllInfo+2440
:1eproxy GetProxyDllInfo+23F0
-1eproxy GetProxyDllInfo+2350
-1eproxy GetProxyDllInfo+2590
-1eproxy GetProxyDllInfo+2490
-1eproxy GetProxyDllInfo+24DO0
-1eproxy GetProxyDllInfo+2510
-1eproxy GetProxyDllInfo+2550
:1eprnxy GetPrnxyDllInfn+25FU

L e e = TSN

Reverse Engineering | Class 5 | Martin Balao | martin. uy/reverse | v1.0 EN | CC BY-SA 49

== Malware Analysis ﬁ

*vtable Is not necessarily in a fixed address
because the DLL that implements the
object class may be located at any virtual
address

vtable values (pointers to method
Implementations) may change from
process to process for the same reason

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 50

Demo 5.3

COM object call (Windows)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 51

typedef struct tagVARIANT {
union {
struct __ tagVARIANT {
VARTYPE vt;
WORD wReservedl;
WORD wReserved?;
WORD wReserved3;

union {
LONGLONG lIVal;
LONG I\Val;
BYTE bVal:
SHORT IVal;
FLOAT fltval;
DOUBLE dblVal;

}

}
}
} VARIANT, ...;

mm Malware Analysis

Structure to represent “generic”
parameter types. Has more overhead but
the advantage of data type being
unknown in compile time.

VARTYPE vt value allows to identify the
parameter type and correctly interpret
the value.

Objects that implement IDispatch
Interface allow introspection: query
methods and properties in run time and
iInvoke them. This interface requires
generic parameters and return values,
because they depend on each
Implementation.

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 52

Malware Analysis Jm
* Rootkits

* Malware that manages to escalate
privileges and execute in ring0 (l.e. load
a driver)

*|t's necessary to debug kernel to detect it

* May modify kernel structures to hide
from user space (l.e.: remove itself from
processes list or hide listening ports)

* Evades anti-virus

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 53

Malware Analysis Jm
* Rootkits

* Has global system visiblility: processes
memory and syscalls

* Hooks sys call table, SSDT or
Interruption vector

* May write read-only memory (processor
IS In privileged mode when executing the
rootkit)

* May try to persist in a firmware (and
resist disk formatting)

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 54

Lab

Lab 5.1: Modify Demo 5.1 code (Create
Remote Thread injection) to call
“GetCommandLine” function in the injected
process and save the result to a file.

Lab 5.2: Modify Demo 5.2 code (ptrace
Injection) to call “getpid” function in the injected
process and save the result to a file.

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 55

Lab

Lab 5.3: Modify Demo 5.2 code (ptrace
Injection) to intercept calls that the injected
application does to a chosen function and log

them to a file.

&

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 56

References

 http://resources.infosecinstitute.com/using-
createremotethread-for-dll-injection-on-windows

* https://msdn.microsoft.com/es-
es/library/windows/desktop/ms682437(v=vs.85)
.aspx

* Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software

Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA 57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

