
1Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Reverse Engineering
Class 5

Malware Analysis

2Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

Something odd?

3Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection
● Hide and evade audit logs
● Bypass endpoint firewalls with application

filtering
● Steal information from the injected process
● Change session (non-interactive session →

interactive session)
● Screenshots

4Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

5Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

6Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Goals
● Move malicious code to the target process
● Create a new thread in the target process

that executes malicious code
● Avoid interruptions or data corruption in the

target process (process continuation)

7Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection techniques (Windows)
● CreateRemoteThread
● Asynchronous Procedure Call
● Debugging API

● Process injection techniques (Linux)
● Debugging API (ptrace)

8Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● CreateRemoteThread (Windows)
● OpenProcess

● Handle to manage a remote process
● VirtualAllocEx

● Allocate memory to the remote process
● Write and execution permissions

9Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● CreateRemoteThread (Windows)
● WriteProcessMemory

● Write remote process memory
● Malicious code to inject

● CreateRemoteThread
● Create a new thread in the remote process

and make it execute previously written
memory

10Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 5.1

Process injection with CreateRemoteThread
(Windows)

11Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Asynchronous Procedure Call (Windows)
● Windows API to queue asynchronous calls to

threads
● When thread is in “alertable” state (I.e.

sleeping), it will handle the call
● Call is to an arbitrary process address,

chosen by the one who enqueues it
● When call ends, thread context is

automatically restored

12Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Asynchronous Procedure Call (Windows)
● A handle to the victim process and to a

thread in it are obtained: OpenProcess,
CreateToolhelp32Snapshot, OpenThread

● Memory is allocated in the process and
executable code is written: VirtualAllocEx y
WriteProcessMemory

13Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Asynchronous Procedure Call (Windows)
● An APC call is enqueued with

QueueUserAPC
● It’s important that injected code creates a

new thread to continue execution: thread that
handles the APC has to return to its normal
execution
● If an application thread is definitely

interrupted, instability may be caused

14Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Debugging API (Windows)
● Allocate memory and write code into the

target process (remotely)
● Debug the target process

● Debugger is attached to a thread
● DebugActiveProcess /

WaitForDebugEvent / ContinueDebugEvent
● Save the attached thread context (I.e. save

registers values in the injector process)

15Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Debugging API (Windows)
● Attached thread is set to execute injected

code
● A new thread has to be created at the

beginning of the injected code
● Control returns to debugger and the attached

thread original context is restored

16Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection in Linux
● Similar to the technique described for

Windows
● Debugging API in Linux (Unix): ptrace
● Read / write the thread context (registers)
● Read / write process memory
● Intercept every signal to the debugged

process
● Run the process step-by-step

17Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection in Linux
● Problem:

● It’s not possible to remotely allocate
memory to a process

● It’s not possible to remotely create a
thread on a process

● Solution:
● Hijack a thread and make it do it on our

behalf

18Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Some ptrace primitives
● PTRACE_ATTACH
● PTRACE_PEEKDATA
● PTRACE_POKEDATA
● PTRACE_SYSCALL
● PTRACE_CONT
● PTRACE_GETREGS
● PTRACE_SETREGS

19Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection in Linux
● Attach to the target process
● Resolve mmap and __clone virtual

addresses (libc)
● Libc base in /proc/<PID>/maps
● Resolution reading memory (ELF format)
● Workaround: resolve offset with dlsym and

dladdr inside the injector and use it on the
injected process

20Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection in Linux
● Save attached thread context to restore it at

the end of injection
● Values are saved on the injector memory
● We want the injected process to continue

execution normally

21Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection in Linux
● Modify attached thread context (hijacking):

● RIP → mmap / __clone address
● Other registers → function parameters

(according to x86_64 ABI)
● Modify stack: 16 bytes alignment (ABI)

and return address = 0x0

22Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection in Linux
● Continue the process and let the called function

execute. When returning, instruction at address 0x0
will be executed and a signal sent to the process
(invalid address)
● Given that the injector is a debugger, receives the

signal first and can handle it
● Signal is discarded, instead of forwarding it to

the debugged process
● Modify the attached thread context to execute

another function or restore it to continue normal
execution

23Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection in Linux
● Function calls in the remote process:

● Allocate memory for the executable buffer
(injected instructions), with mmap

● Allocate memory for the stack of the
thread that is going to execute the injected
buffer, with mmap

● Create a new thread, with __clone

24Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Process injection in Linux
● How registers or memory have to be set for

each call?
● Application Binary Interface (ABI),

according to the architecture
● Tip: debug a simple example that uses libc

API and follow it until syscall is executed

25Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 5.2

Process injection with ptrace (Linux)

26Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Limits of previous techniques
● Security model in Windows

● Access Token – object that describes the security context
of a process or thread (GetTokenInformation)
● When user logs into the system, an access token is

assigned. Every process that the user executes have
this token

● Contains user account identity and its groups: SIDs
(Security Identifiers)

● Contains privileges for administrative tasks (I.e. reboot
the system, change date, load drivers, etc.)

● One thread may eventually impersonate a different user
and use its access token

27Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Limits of previous techniques
● Security model in Windows

● Security Descriptors: security information
associated to each Securable Object
● Owner and primary group
● DACL – discretionary access (access to

specific users or groups)

28Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

Image from https://msdn.microsoft.com/en-us/library/windows/desktop/aa378890(v=vs.85).aspx

29Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

Not elevated

Elevated

Same SID

30Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

31Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● To invoke OpenProcess and other debugging APIs in a
process from a different user, “SeDebugPrivilege” privilege
has to be enabled in the Access Token
● Only administrative accounts should have this privilege

available to be enabled
● To debug processes from the same user this privilege is

not needed
● From a defensive point of view, this remarks the

importance of not executing with administrative accounts
or, in that case, impersonate non-privileged users

● Model brings granularity to assign non-privileged
accounts the privileges needed (least privilege principle)

32Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Limits of previous techniques
● Security model in Linux

● Before kernel 2.2, security model
consisted of privileged and non-privileged.
A privileged process had unrestricted
control of the whole system

● Some software legitimately requires
privileges. In example, a DNS server has
to listen incoming connections in a low
port (53)

33Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Limits of previous techniques
● Security model in Linux

● Under the assumption that the process might
be exploited, damage mitigation is needed

● “Capabilities” bring privilege granularity to
processes

● “Capabilities” are associated to executable
binaries.

● A process that drops “capabilities” in run
time, cannot re-acquire them later

34Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

cap_get_proc(...);
cap_set_flag(...);
cap_set_proc(...);

#include <linux/capability.h>
#include <sys/capability.h>

35Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Limits of previous techniques
● Security model in Linux

● To arbitrary debug processes (from
different users), CAP_SYS_PTRACE
capability is required

36Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Analyzing external libraries and functions that
malware uses may give an idea of its behavior
● I.e if debugging APIs are used, it’s likely that

the malware has process injection
capabilities

37Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Getting familiar with DLLs in Windows
● Kernel32.dll

● Base DLL. Memory, files and hardware
management. Imported by every executable
binary

● Advapi32.dll
● Access to Service Manager and Registry

● User32.dll
● Graphic interface components (buttons, scroll

bars, text areas, etc.)

38Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Getting familiar with DLLs in Windows
● Gdi32.dll

● Graphics management. User space library. Win32k.sys in
kernel

● WSock32.dll, Ws2_32.dll y Wininet.dll
● Networking libraries (sockets, HTTP connections, etc.)

● Msvcrt.dll
● C/C++ runtime. Abstraction layer on top of Windows API.

Memory allocation, files, strings, etc.
● Ntdll.dll

● Not documented but present in every process. Interface to
kernel

39Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

Image from “Practical Malware Analysis: The
Hands-On Guide to Dissecting Malicious Software”

Ntdll.dll is interesting because it
includes:
● Kernel structures
● Not documented APIs, that

enable extra functionality (or
high level APIs restrictions
bypassing)

● Avoid importing “suspicious”
functions

Malware can eventually execute
direct kernel syscalls, based on
what ntdll.dll does (syscalls are
not documented)

40Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● How does a keylogger work?
● Challenge: mange a huge amount of data
● API SetWindowsHookEx

● Malware installs a hook (callback) for a specific
event
● In case of a keylogger, that event is

WH_KEYBOARD_LL
● Hooks can be global or thread-specific
● This technique can be used to inject DLLs in

processes: callback (implemented in a DLL) is
called in the context of the process that generates
the event

41Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● How does a keylogger work?
● Limits

● Discretionary security (per user or group) is not enough:
what happens if a malware downloaded from the
Internet gets executed by an administrative user? What
happens if the Internet browser is remotely exploited?

● Mandatory security: securable objects and processes
have an assigned integrity level
● A low integrity process cannot read or write a high

integrity object
● A low integrity process cannot install a keylogger

hook

42Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● COM – Component Object Model
● Object oriented communication framework

● Communication within the same process, between
processes or between processes on distributed
hosts (DCOM)

● Bindings for different languages. Example: from
VBAScript a function on a DLL (developed in C++)
can be invoked
● Used by Internet Explorer and Microsoft Office

among others
● Parameters marshalling. Data types normalization.

Objects reference counting

43Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● COM – Component Object Model
● Stable ABI, independent from the language

and compiler
● Communication happens on top of low

level mechanisms
● In example, DCOM can use SMB and

TCP/IP as transport

44Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● COM – Component Object Model
● Works in client-server mode
● Server exposes an object (reusable component)

to be used by different clients
● Object implements one or more interfaces

(IIDs). I.e. IWebBrowser2. Object concrete
implementation (class, identified by a CLSID)
can be a DLL or an executable binary. I.e.
Internet Explorer

● Client consumes services offered by the object
calling its methods or properties

45Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● COM – Component Object Model
● A client locates an object published in the

Registry
● Interfaces and classes are identified by GUIDs

(unique numbers 128 bits long)
● HKLM\SOFTWARE\Classes\CLSID\ and

HKCU\SOFTWARE\Classes\CLSID
● OleInitialize, CoInitializeEx, CoCreateInstance

● COM is implemented in DLLs like Ole32.dll,
Oleauto32.dll and technologies like ActiveX

46Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● COM – Component Object Model
● Methods always return HRESULT to indicate the

result of the call
● Return values go through pointer parameters.

Parameter types are specified with [IN] and [OUT] in
documentation

● An object always implements IUnknown interface.
This interface allows to:
● Modify the object reference counter (AddRef,

Release)
● Obtain pointers to other interfaces implemented by

the object (“casting”)

47Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

IWebBrowser2* pObjBrowser2;
CoCreateInstance(…);
pObjBrowser2->Navigate();

48Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

EAX = pointer to the object (heap)

In the first bytes of the object memory there
is a pointer to the class vtable.

vtable is a table of pointers to the
implementation of class methods.

After vtable pointer, object attributes are
located.

49Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

ECX = pointer to object’s class vtable
(IWebBrowser2 interface)

50Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● vtable is not necessarily in a fixed address
because the DLL that implements the
object class may be located at any virtual
address

● vtable values (pointers to method
implementations) may change from
process to process for the same reason

51Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 5.3

COM object call (Windows)

52Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis
typedef struct tagVARIANT {
 union {
 struct __tagVARIANT {
 VARTYPE vt;
 WORD wReserved1;
 WORD wReserved2;
 WORD wReserved3;
 union {
 LONGLONG llVal;
 LONG lVal;
 BYTE bVal;
 SHORT iVal;
 FLOAT fltVal;
 DOUBLE dblVal;
 ...
 }
 ...
 }
 }
} VARIANT, …;

Structure to represent “generic”
parameter types. Has more overhead but
the advantage of data type being
unknown in compile time.

VARTYPE vt value allows to identify the
parameter type and correctly interpret
the value.

Objects that implement IDispatch
interface allow introspection: query
methods and properties in run time and
invoke them. This interface requires
generic parameters and return values,
because they depend on each
implementation.

53Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Rootkits
● Malware that manages to escalate
privileges and execute in ring0 (I.e. load
a driver)

● It’s necessary to debug kernel to detect it
● May modify kernel structures to hide
from user space (I.e.: remove itself from
processes list or hide listening ports)

● Evades anti-virus

54Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Malware Analysis

● Rootkits
● Has global system visibility: processes
memory and syscalls

● Hooks sys_call_table, SSDT or
interruption vector

● May write read-only memory (processor
is in privileged mode when executing the
rootkit)

● May try to persist in a firmware (and
resist disk formatting)

55Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab

Lab 5.1: Modify Demo 5.1 code (Create
Remote Thread injection) to call
“GetCommandLine” function in the injected
process and save the result to a file.

Lab 5.2: Modify Demo 5.2 code (ptrace
injection) to call “getpid” function in the injected
process and save the result to a file.

56Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab

Lab 5.3: Modify Demo 5.2 code (ptrace
injection) to intercept calls that the injected
application does to a chosen function and log
them to a file.

57Reverse Engineering | Class 5 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

References

● http://resources.infosecinstitute.com/using-
createremotethread-for-dll-injection-on-windows

● https://msdn.microsoft.com/es-
es/library/windows/desktop/ms682437(v=vs.85)
.aspx

● Practical Malware Analysis: The Hands-On
Guide to Dissecting Malicious Software

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

