
1Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Reverse Engineering
Class 6

Fuzzing

2Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Grey box testing
● Source code access is not necessary. If available,

useful but full understanding is not required
● May be guided by reverse engineering

● Send, in an automatized way, valid and invalid inputs to
an application with the goal of triggering bad behavior
● Eventually, security problems

● Find vulnerabilities (bug hunting)
● Internally
● Externally (bug bounty, security advisory, research)

3Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Applicable to all types of inputs:
● Web applications

● POST/GET parameters fuzzing
● File formats (doc, jpg, mp3, etc.) and file systems

● Vulnerabilities in the parser
● Network protocols
● Programming languages

● I.e. JavaScript can be seen as a complex input for a browser
● Drivers

● I.e. ioctls handled by a driver, file system/network filters,
read/write operations in a char device, etc.

● Etc.

4Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Relevance of fuzzing
● Relatively new discipline
● Significant industry effort

● ClusterFuzz, OSS-Fuzz (Google)
● SAGE (Microsoft)

● Yet much to be done
● Relevant because of the number of

vulnerabilities found

5Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Relevance of fuzzing
● Commercial and open fuzzers

● PeachFuzzer (commercial)
● SPIKE (open)
● AFL (open)

● Generic fuzzing frameworks
● Custom fuzzers (ad-hoc)

6Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Limits of fuzzing
● Logic bugs or data attacks

● Fuzzers are generally not focused on logic bugs
like information disclosure or privilege escalation

● Memory corruption bugs that do not cause crashes
● It’s necessary to recompile with libraries (or

compilation flags) that set sentinels around
buffers to expose memory corruptions

● Race conditions
● Difficult to reproduce bugs

7Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Types of fuzzers
● Purely random fuzzers

● Generate garbage inputs
● No cost but dumb

● Mutational
● Valid inputs are randomly modified (I.e.

mutations, permutations, replacements with
dictionaries or magic numbers)

● It’s important to have a representative set of
inputs

8Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Types of fuzzers
● Evolutionary or genetic

● Mutational variant, generation is guided by metrics and
feedback

● Generational
● Inputs are generated based on a model or specification

(I.e. language grammar or communications protocol)
● High development cost. Specification is not always

available. It may be necessary to do reverse
engineering

● Mixed

9Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Metrics
● Exercise the highest number of possible

execution flows and memory states
● Code-coverage

● Performance
● Reliable crash detection
● Reproducible cases (documented)

10Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Stages
● Inputs identification and format analysis

● Not always obvious:
● Sockets?
● Syscalls?
● Files? Meta-data?
● Environment variables? Which?
● Registry? Which key?
● IPC mechanisms?

11Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Stages
● Automated and fast input generation
● Automation

● Fast sending of inputs
● Reliable crash detection

● Crash analysis
● Reduction of inputs that generate crashes

(manual or automated)
● Exploitability analysis (manual)

12Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Purely random fuzzers problem

Demo 6.1

13Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Inputs format analysis
● Key-value fields (I.e. JSON, HTTP header)
● Variable length fields
● Fields bounded by special characters
● Text inputs (ASCII, UTF-8) or binary inputs
● Understanding inputs format may help to

better focus the effort. Sometimes, inputs
analysis requires reverse engineering

14Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Assume that an application receives a 64 bit
integer as input
● Trying the whole range has a high

computational and time cost
● Is possible to build a smarter fuzzer? Which

heuristics can be applied to this case?

15Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Range boundaries, assuming different sizes to
represent an integer:
● 0...0xFF, 0...0xFF, 0...0xFFFF,

0...0xFFFFFFFF, 0…
0xFFFFFFFFFFFFFFFF

● What would happen if the integer is added to
a constant? (I.e. for memory allocation)

● Test values near boundaries:
● 0, 1, 2, 3, 4 … 0xFD, 0xFE, 0xFF, etc.

16Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● What if the integer is multiplied by a constant?
(I.e. 2)
● Test range boundaries divided by the

constant and near values. I.e.: 0xFF/2,
0xFFFF/2, 0xFFFFFFFF/2, etc.

● Test magic numbers
● Integers that may have a special meaning

within a context (I.e. constants, enumerative
values)

17Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Assume that an application receives a string as
input
● Which heuristics can be applied here?

18Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Different encodings and multi-byte characters
● ASCII, UTF-8, UTF-16, UTF-32, html encoding, etc.
● Are there format conversions? Are implementations correct? Are

there problems calculating lengths?
● Escape characters, delimiters, special characters according to the

context. I.e. if an XML parser is being tested, it makes sense to try
characters like “<” and sequences like “<![CDATA[]]>”.

● Null terminated strings? Has string data type a length at the beginning?
(I.e. BSTR)

● Delimiter characters repetition (is it possible to trigger an overflow in a
variable?)

● Different lengths
● Format strings (“%s, %d ...”)
● Dictionary words (according to the context)

19Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● In-memory fuzzing
● Inputs are directly injected into the targeted

process memory
● How can it be done?

20Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● In-memory fuzzing
● Improve performance
● Avoid generated input post-processing

● Encrypt, sign, calculate checksums,
include a previous token or other integrity
control, etc.

● Skip previous states in the state machine
● I.e. authentication

21Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● In-memory fuzzing
● Higher implementation cost
● It’s necessary to start from a valid memory

state (one that can be reached through a
sequence of valid inputs)
● This does not prevent from false positives.

I.e. a previous filter or check may discard
the input that generates the crash

22Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● In-memory fuzzing
● Patch process memory to execute

trampolines (hooks)
● How?

● Binary instrumentation frameworks
● DynamoRIO
● PIN

● Recompile with hooks (if source code is
available)

23Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Automation
● Automation is everything
● Computing cost is low compared to qualified

talent
● The number of cases that can be tested by

unit of time is significantly higher, and cases
can be tried on multiple targets

● Focus efforts on a good case generation and
execution

24Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Automator (cases executor)
● Launch an application

● Clean memory state?
● Fork + copy-on-write

● Generate input
● Make the application process the input
● Detect crashes
● Kill the application or reset state

25Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Automator (cases executor)
● Performance

● Minimize I/O
● Parallel fuzzing (multi-process / multi-core)

● Multi-platform

26Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Automator (cases executor)
● Reliability

● Do not leak memory
● Do not crash
● It’s going to execute for a long time,

unattended
● Save inputs (or “seeds” that can generate

inputs)

27Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● Automator (cases executor)
● Example of an architecture:

● WebGL/GLSL Fuzzer

28Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

* Diagram extracted from the “Fuzzing Automation Framework - Parallel framework for high performance
fuzzing automation” talk (Martin Balao, Core Security 2017)

29Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

* Diagram extracted from the “Fuzzing Automation Framework -
Parallel framework for high performance fuzzing automation” talk
(Martin Balao, Core Security 2017)

30Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

● 1. Each Worker Thread spawns/forks a targeted
application

● 2. Targeted application announces its PID
● 3. Main Thread handles the announcement
● 4. Main Thread notifies a Worker Thread about

the new application
● 5. A communication is established between the

Worker Thread and the targeted application
● 6. Worker Thread debugs the targeted application

31Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

* Diagram extracted from the “Fuzzing Automation Framework - Parallel framework for high performance
fuzzing automation” talk (Martin Balao, Core Security 2017)

32Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Fuzzing

* Diagram extracted from the “Fuzzing Automation Framework - Parallel framework for high performance
fuzzing automation” talk (Martin Balao, Core Security 2017)

33Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Resolvers for equation systems
– SMT (Satisfiability Modulo Theories) solvers take

problems in arbitrary forms. Variables can be int.
Use SAT solvers as backends

– SAT solvers take problems in Normal Conjunctive
Form (boolean logic). Boolean operands. Variables
are true or false

x>4∧(y>−1∨x> y+1)

¬ A∧(B∨C)

34Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● 3 possible states for the solution:
– Cannot be satisfied

– Can be satisfied (and one or more solution cases)

– Don’t know! Timeout?

● Not new, but computing power now made possible
to solve problems that some time ago were not

● Has application to an infinite number of problems
● z3 is a library that has SMT/SAT solvers.

Developed in C++ but has bindings for multiple
languages (Python, .NET, Java, etc.)

35Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How can we solve this equations system?

36Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

#!/usr/bin/python
from z3 import *
x = Real('x')
y = Real('y')
z = Real('z')
s = Solver()
s.add(3*x + 2*y - z == 1)
s.add(2*x - 2*y + 4*z == -2)
s.add(-x + 0.5*y - z == 0)
print s.check()
print s.model()

sat
[z = -2, y = -2, x = 1]

37Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers
● How can we solve this Sudoku?

38Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Cells in the board have to be filled with
numbers from 1 to 9

● Numbers cannot be repeated:
– Per row

– Per column

– Per sub-quadrant

● Can we model this problem so it can be
adequate for an SMT solver?
How can we model constraints?

39Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Model the board as an Int matrix ([][]):
cells=[[Int('cell%d%d' % (r, c)) for c in range(9)]
for r in range(9)]

● Add constraints for cells that already have an
assigned value: s.add(cells[current_row]
[current_column]==int(i))

● Add constraints to each cell for the solution to
be between 1 and 9: s.add(cells[r][c]>=1),
s.add(cells[r][c]<=9)

40Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Add constraints for column and row
uniqueness: s.add(Distinct(cells[r][0],… cells[r]
[8])) y s.add(Distinct(cells[0][c],… cells[8][c]))

● Add constraints for sub-quadrant uniqueness:
s.add(Distinct(cells[r+0][c+0]…))

● Check if there is a solution: s.check()
● Obtain a solution: m=s.model()

41Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers
● How can we solve this minesweeper?

42Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

1) Is it safe to
tap here?

2) and here?

Assume that there is a mine
in each place, can
constraints imposed by
nearby cells be satisfied?

43Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

This 1 imposes the
following condition: 1) + 2)
= 1
This 1 imposes the
following condition: 2) = 1

If we assume that the
mine is in 1), the
following condition is
added: 1) = 1

44Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

SMT solver returns that
the equations system has
no solution. Thus, mine is
not in 1)

If there is at least 1
solution, we cannot
decide whether there is a
mine or not

45Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● It’s important to correctly model the problem
and make the question in a way that the SMT
solver can answer it (within a reasonable time
frame)

● It’s also possible to resolve optimization
problems in z3

46Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Cracking a cipher text (plain text XOR key) with
z3

XOR Truth Table

47Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Let’s assume that plain text is a text in English.
Key length is unknown, but much smaller than
cipher text

● One approach is to try different key lengths and
for each one maximize the number of
alphabetical characters

● We need to add XOR operation and periodic
key repetition constraints. I.e. if key has a
length of 5, byte 0 of the key will be XORed
with cipher text in positions multiple of 5

48Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Variables to model the problem
variables for each byte of key:
key=[BitVec('key_%d' % i, 8) for i in range (KEY_LEN)]

variables for each byte of input cipher text:
cipher=[BitVec('cipher_%d' % i, 8) for i in range (cipher_len)]

variables for each byte of input plain text:
plain=[BitVec('plain_%d' % i, 8) for i in range (cipher_len)]

variable for each byte of plain text: 1 if the byte in 'a'...'z'
range:
az_in_plain=[Int('az_in_plain_%d' % i) for i in range
(cipher_len)]

49Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Variables to model the problem

Example (key length = 5)

● Key = [0x55, 0x03, 0xAB, 0x1C, 0xE5]
● cipher text = [0x34, 0x61, 0x54, 0x7F, 0x81, ...]
● plain text = [0x61, 0x62, 0xFF, 0x63, 0x64, ...]
● az_in_plain= [1, 1, 0, 1, 1, …]

We want to maximize the sum of az_in_plain

BitVec (8 bits)

Int

50Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Problem constraints
for i in range(cipher_len):
 # assign each byte of cipher text from the input file:
 s.add(cipher[i]==ord(cipher_file[i]))
 # plain text is cipher text XOR-ed with key:
 s.add(plain[i]==cipher[i]^key[i % KEY_LEN])
 # each byte must be in printable range, or CR of LF:
 s.add(Or(And(plain[i]>=0x20,
plain[i]<=0x7E),plain[i]==0xA,plain[i]==0xD))
 # 1 if in 'a'...'z' range, 0 otherwise:

s.add(az_in_plain[i]==If(And(plain[i]>=ord('a'),plain[i]<=ord('
z')), 1, 0))

51Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Solution

s=Optimize()

s.maximize(Sum(*az_in_plain))
if s.check()==unsat:
 return
m=s.model()

test_key="".join(chr(int(obj_to_string(m[key[i]]))) for i in
range(KEY_LEN))

52Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● Solution
– Multiple variables can be optimized at the same

time

– It’s possible to assume that the appearance of
certain letters together is more likely and use this
information as an optimization vector

– It’s possible to weigh optimization vectors and
“educate” the search for solutions

53Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How do SMT/SAT solvers work?
– Common theories

● Bit Vectors
– Ideal to represent finite range data types. I.e. 32 bits integers.

This enables to model “overflows” and “underflows”

● Arrays
– Variable length

● Integers
● Not-interpreted functions

– Given the same inputs, the same output is returned

54Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How do SMT/SAT solvers work?
– Base of constraints in normal conjunctive form

(every boolean formula can be expressed in this
form)

– SAT solver assigns a truth value to one variable,
and start making deductions based on that

x1∨x2∨x3

55Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How do SMT/SAT solvers work?

x1=true

−x1∨x7⇒ x7=true

−x7∨x5∨−x1⇒ x5=true
...

● It may either assign a value to each variable without
violating constraints or come to a contradiction. If it comes
to a contradiction, it has to summarize it in a single clause
and add it to the base of constraints to avoid it next time

56Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How do SMT/SAT solvers work?

x>5∧ y<5∧(y>x∨ y>2)

● Part of this formula requires reasoning in a specific
domain (i.e. set of integers) and the other part is
boolean logic that can be expressed in normal
conjunctive form (SAT solver)

F 1∧F 2∧(F 3∨F 4)

57Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How do SMT/SAT solvers work?

F 1∧F 2∧(F 3∨F 4)

SAT SOLVER

F 1=true , F 2=true , F 3=true

58Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How do SMT/SAT solvers work?

x>5, y<5, y>x

Theory Solver
(linear arithmetic)

NO

59Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How do SMT/SAT solvers work?

F 1∧F 2∧(F 3∨F 4)

SAT SOLVER

F 1=true , F 2=true , F 4=true

¬(F 1∧F 2∧F 3)

60Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

SMT/SAT Solvers

● How do SMT/SAT solvers work?

x>5, y<5, y>2

Theory Solver
(linear arithmetic)

Yes x=6, y=3

61Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● How can SMT/SAT solvers contribute to
vulnerability finding in source code?

– Symbolic execution
● Technique to analyze programs
● How is the behavior going to be in a potentially

infinite input set?
● Improve code coverage
● When a problem is found, it can provide a set of

inputs to reproduce it (as opposed to static
analysis)

62Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

void foo (int x, int y) {
int t = 0;

if (x > y) {
t = x;

 } else {
t = y;

}

if (t < x) {
assert false;

}

}

Are there a pair of
x, y inputs that
trigger the
assertion?

63Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

x y t

4 4 0

4 4 4

Assertion is not
triggered: x == t

Program state
characterization:
3 state variables

64Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

x y t

2 1 0

2 1 2

Assertion is not
triggered: x == t

But, how can we make sure that there are no
inputs for which the assertion is triggered?

65Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● Program state redefinition, mapping unknown

variables (x, y) to symbolic values (x, y)

x y t

x y 0

x y t0

(x> y)⇒ x ,(x≤ y)⇒ y⏞
t 0

66Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● Is it possible to satisfy the following
constraints? Is there a solution for this
equations system?

(x> y)⇒ t0=x

(x≤ y)⇒ t0= y

t0<x

67Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● Is it possible to satisfy the following
constraints? Is there a solution for this
equations system?

(x> y)⇒ t0=x

(x≤ y)⇒ t0= y

t0<x

68Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● Is it possible to satisfy the following
constraints? Is there a solution for this
equations system?

(x> y)⇒ t0=x

(x≤ y)⇒ t0= y

t0<x

(t0<x≤ y=t0)

(t0<t0)

69Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● Is it possible to satisfy the following
constraints? Is there a solution for this
equations system?
– An SMT/SAT solver can bring the answer!

– In general, despite there can be many variables
involved in a real problem, there aren’t so many
degrees of freedom: variables tend to be
conditioned by others

● Depends on the size of the unit that is being analyzed
● If a function is simple, all paths can be analyzed at once

70Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

#!/usr/bin/python
from z3 import *

x = Int('x')
y = Int('y')
t = Int('t')
s = Solver()

s.add(t < x)
s.add(If(x > y, t == x, t == y))

print s.check()
print s.model()

unsat

71Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● If software being
analyzed is too
complex, path
exploration can be
used

72Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

Constraints:

t0=x

t0<x

Simpler equations
system when exploring
only 1 path

Question is just if this
path is feasible

73Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

Constraints:

x≤ y=t0

t0<x

Simpler equations
system when exploring
only 1 path

Question is just if this
path is feasible

74Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● More paths are
explored but each
of them is simpler.
It’s possible to use
strategies to
discard unfeasible
paths.

75Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Symbolic Execution

● Symbolic execution can be used as a
complement to real execution (fuzzing /
testing). I.e:
– A code-coverage tool shows that a program path

was not executed doing fuzzing

– We take a close case (generated with real input)
and apply symbolic execution from a known state to
trigger non-executed paths

76Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab

Lab 6.1: Implement “generate_input” function in
fuzzer.py to crash main, without doing reverse
engineering on the binary

● In case of not crashing it, do reverse
engineering to guide automated inputs
generation

● In case of not crashing it, analyze the
source code to guide automated inputs
generation

77Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

References

● Fuzzing Brute Force Vulnerability Discovery
● Examples obtained from:

– “Quick introduction into SAT/SMT solvers and
symbolic execution” - Dennis Yurichev

– MITOpenCourseware – Computer System Security
– Lecture 10: Symbolic Execution – Armando Solar-
Lezama

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

