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Reverse Engineering
Class 6

Fuzzing



2Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Fuzzing

● Grey box testing
● Source code access is not necessary. If available, 

useful but full understanding is not required
● May be guided by reverse engineering

● Send, in an automatized way, valid and invalid inputs to 
an application with the goal of triggering bad behavior
● Eventually, security problems

● Find vulnerabilities (bug hunting)
● Internally
● Externally (bug bounty, security advisory, research)
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Fuzzing

● Applicable to all types of inputs:
● Web applications

● POST/GET parameters fuzzing
● File formats (doc, jpg, mp3, etc.) and file systems

● Vulnerabilities in the parser
● Network protocols
● Programming languages

● I.e. JavaScript can be seen as a complex input for a browser
● Drivers

● I.e. ioctls handled by a driver, file system/network filters, 
read/write operations in a char device, etc.

● Etc.
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Fuzzing

● Relevance of fuzzing
● Relatively new discipline
● Significant industry effort

● ClusterFuzz, OSS-Fuzz (Google)
● SAGE (Microsoft)

● Yet much to be done
● Relevant because of the number of 

vulnerabilities found
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Fuzzing

● Relevance of fuzzing
● Commercial and open fuzzers

● PeachFuzzer (commercial)
● SPIKE (open)
● AFL (open)

● Generic fuzzing frameworks
● Custom fuzzers (ad-hoc)
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Fuzzing

● Limits of fuzzing
● Logic bugs or data attacks

● Fuzzers are generally not focused on logic bugs 
like information disclosure or privilege escalation

● Memory corruption bugs that do not cause crashes
● It’s necessary to recompile with libraries (or 

compilation flags) that set sentinels around 
buffers to expose memory corruptions

● Race conditions
● Difficult to reproduce bugs
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Fuzzing

● Types of fuzzers
● Purely random fuzzers

● Generate garbage inputs
● No cost but dumb

● Mutational
● Valid inputs are randomly modified (I.e. 

mutations, permutations, replacements with 
dictionaries or magic numbers)

● It’s important to have a representative set of 
inputs
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Fuzzing

● Types of fuzzers
● Evolutionary or genetic

● Mutational variant, generation is guided by metrics and 
feedback

● Generational
● Inputs are generated based on a model or specification 

(I.e. language grammar or communications protocol)
● High development cost. Specification is not always 

available. It may be necessary to do reverse 
engineering

● Mixed
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Fuzzing

● Metrics 
● Exercise the highest number of possible 

execution flows and memory states
● Code-coverage

● Performance
● Reliable crash detection
● Reproducible cases (documented)
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Fuzzing

● Stages
● Inputs identification and format analysis

● Not always obvious:
● Sockets?
● Syscalls?
● Files? Meta-data?
● Environment variables? Which?
● Registry? Which key?
● IPC mechanisms?
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Fuzzing

● Stages
● Automated and fast input generation
● Automation

● Fast sending of inputs
● Reliable crash detection

● Crash analysis
● Reduction of inputs that generate crashes 

(manual or automated)
● Exploitability analysis (manual)
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Fuzzing

● Purely random fuzzers problem

Demo 6.1
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Fuzzing

● Inputs format analysis
● Key-value fields (I.e. JSON, HTTP header)
● Variable length fields
● Fields bounded by special characters
● Text inputs (ASCII, UTF-8) or binary inputs
● Understanding inputs format may help to 

better focus the effort. Sometimes, inputs 
analysis requires reverse engineering
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Fuzzing

● Assume that an application receives a 64 bit 
integer as input
● Trying the whole range has a high 

computational and time cost
● Is possible to build a smarter fuzzer? Which 

heuristics can be applied to this case? 
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Fuzzing

● Range boundaries, assuming different sizes to 
represent an integer:
● 0...0xFF, 0...0xFF, 0...0xFFFF, 

0...0xFFFFFFFF, 0…
0xFFFFFFFFFFFFFFFF

● What would happen if the integer is added to 
a constant? (I.e. for memory allocation)

● Test values near boundaries:
● 0, 1, 2, 3, 4 … 0xFD, 0xFE, 0xFF, etc. 
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Fuzzing

● What if the integer is multiplied by a constant? 
(I.e. 2)
● Test range boundaries divided by the 

constant and near values. I.e.: 0xFF/2, 
0xFFFF/2, 0xFFFFFFFF/2, etc.

● Test magic numbers
● Integers that may have a special meaning 

within a context (I.e. constants, enumerative 
values)
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Fuzzing

● Assume that an application receives a string as 
input
● Which heuristics can be applied here? 
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Fuzzing

● Different encodings and multi-byte characters
● ASCII, UTF-8, UTF-16, UTF-32, html encoding, etc.
● Are there format conversions? Are implementations correct? Are 

there problems calculating lengths?
● Escape characters, delimiters, special characters according to the 

context. I.e. if an XML parser is being tested, it makes sense to try 
characters like “<” and sequences like “<![CDATA[]]>”. 

● Null terminated strings? Has string data type a length at the beginning? 
(I.e. BSTR)

● Delimiter characters repetition (is it possible to trigger an overflow in a 
variable?)

● Different lengths
● Format strings (“%s, %d ...”)
● Dictionary words (according to the context)
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Fuzzing

● In-memory fuzzing
● Inputs are directly injected into the targeted 

process memory
● How can it be done?
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Fuzzing

● In-memory fuzzing
● Improve performance
● Avoid generated input post-processing

● Encrypt, sign, calculate checksums, 
include a previous token or other integrity 
control, etc.

● Skip previous states in the state machine
● I.e. authentication
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Fuzzing

● In-memory fuzzing
● Higher implementation cost
● It’s necessary to start from a valid memory 

state (one that can be reached through a 
sequence of valid inputs)
● This does not prevent from false positives. 

I.e. a previous filter or check may discard 
the input that generates the crash
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Fuzzing

● In-memory fuzzing
● Patch process memory to execute 

trampolines (hooks)
● How?

● Binary instrumentation frameworks
● DynamoRIO
● PIN

● Recompile with hooks (if source code is 
available)
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Fuzzing

● Automation
● Automation is everything
● Computing cost is low compared to qualified 

talent
● The number of cases that can be tested by 

unit of time is significantly higher, and cases 
can be tried on multiple targets

● Focus efforts on a good case generation and 
execution
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Fuzzing

● Automator (cases executor)
● Launch an application

● Clean memory state?
● Fork + copy-on-write

● Generate input
● Make the application process the input
● Detect crashes
● Kill the application or reset state
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Fuzzing

● Automator (cases executor)
● Performance

● Minimize I/O
● Parallel fuzzing (multi-process / multi-core)

● Multi-platform
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Fuzzing

● Automator (cases executor)
● Reliability

● Do not leak memory
● Do not crash
● It’s going to execute for a long time, 

unattended
● Save inputs (or “seeds” that can generate 

inputs)



27Reverse Engineering | Class 6 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Fuzzing

● Automator (cases executor)
● Example of an architecture: 

● WebGL/GLSL Fuzzer
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Fuzzing

* Diagram extracted from the “Fuzzing Automation Framework - Parallel framework for high performance 
fuzzing automation” talk (Martin Balao, Core Security 2017) 
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Fuzzing

* Diagram extracted from the “Fuzzing Automation Framework - 
Parallel framework for high performance fuzzing automation” talk 
(Martin Balao, Core Security 2017) 
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Fuzzing

● 1. Each Worker Thread spawns/forks a targeted 
application

● 2. Targeted application announces its PID
● 3. Main Thread handles the announcement
● 4. Main Thread notifies a Worker Thread about 

the new application
● 5. A communication is established between the 

Worker Thread and the targeted application
● 6. Worker Thread debugs the targeted application
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Fuzzing

* Diagram extracted from the “Fuzzing Automation Framework - Parallel framework for high performance 
fuzzing automation” talk (Martin Balao, Core Security 2017) 
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Fuzzing

* Diagram extracted from the “Fuzzing Automation Framework - Parallel framework for high performance 
fuzzing automation” talk (Martin Balao, Core Security 2017) 
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SMT/SAT Solvers

● Resolvers for equation systems 
– SMT (Satisfiability Modulo Theories) solvers take 

problems in arbitrary forms. Variables can be int. 
Use SAT solvers as backends

– SAT solvers take problems in Normal Conjunctive 
Form (boolean logic). Boolean operands. Variables 
are true or false

x>4∧( y>−1∨x> y+1)

¬ A∧(B∨C )
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SMT/SAT Solvers

● 3 possible states for the solution:
– Cannot be satisfied

– Can be satisfied (and one or more solution cases)

– Don’t know! Timeout?

● Not new, but computing power now made possible 
to solve problems that some time ago were not

● Has application to an infinite number of problems
● z3 is a library that has SMT/SAT solvers. 

Developed in C++ but has bindings for multiple 
languages (Python, .NET, Java, etc.)
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SMT/SAT Solvers

● How can we solve this equations system?
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SMT/SAT Solvers

#!/usr/bin/python
from z3 import *
x = Real('x')
y = Real('y')
z = Real('z')
s = Solver()
s.add(3*x + 2*y - z == 1)
s.add(2*x - 2*y + 4*z == -2)
s.add(-x + 0.5*y - z == 0)
print s.check()
print s.model()

sat
[z = -2, y = -2, x = 1]
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SMT/SAT Solvers
● How can we solve this Sudoku?
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SMT/SAT Solvers

● Cells in the board have to be filled with 
numbers from 1 to 9

● Numbers cannot be repeated:
– Per row

– Per column

– Per sub-quadrant

● Can we model this problem so it can be 
adequate for an SMT solver? 
How can we model constraints?
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SMT/SAT Solvers

● Model the board as an Int matrix ([][]): 
cells=[[Int('cell%d%d' % (r, c)) for c in range(9)] 
for r in range(9)]

● Add constraints for cells that already have an 
assigned value: s.add(cells[current_row]
[current_column]==int(i))

● Add constraints to each cell for the solution to 
be between 1 and 9: s.add(cells[r][c]>=1), 
s.add(cells[r][c]<=9)
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SMT/SAT Solvers

● Add constraints for column and row 
uniqueness: s.add(Distinct(cells[r][0],… cells[r]
[8])) y s.add(Distinct(cells[0][c],… cells[8][c]))

● Add constraints for sub-quadrant uniqueness: 
s.add(Distinct(cells[r+0][c+0]…))

● Check if there is a solution: s.check()
● Obtain a solution: m=s.model()
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SMT/SAT Solvers
● How can we solve this minesweeper?
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SMT/SAT Solvers

1) Is it safe to 
tap here?

2) and here?

Assume that there is a mine 
in each place, can 
constraints imposed by 
nearby cells be satisfied?
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SMT/SAT Solvers

This 1 imposes the 
following condition: 1) + 2) 
= 1
This 1 imposes the 
following condition: 2) = 1

If we assume that the 
mine is in 1), the 
following condition is 
added: 1) = 1
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SMT/SAT Solvers

SMT solver returns that 
the equations system has 
no solution. Thus, mine is 
not in 1)

If there is at least 1 
solution, we cannot 
decide whether there is a 
mine or not
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SMT/SAT Solvers

● It’s important to correctly model the problem 
and make the question in a way that the SMT 
solver can answer it (within a reasonable time 
frame)

● It’s also possible to resolve optimization 
problems in z3
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SMT/SAT Solvers

● Cracking a cipher text (plain text XOR key) with 
z3

XOR Truth Table
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SMT/SAT Solvers

● Let’s assume that plain text is a text in English. 
Key length is unknown, but much smaller than 
cipher text

● One approach is to try different key lengths and 
for each one maximize the number of 
alphabetical characters

● We need to add XOR operation and periodic 
key repetition constraints. I.e. if key has a 
length of 5, byte 0 of the key will be XORed 
with cipher text in positions multiple of 5
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SMT/SAT Solvers

● Variables to model the problem
# variables for each byte of key:
key=[BitVec('key_%d' % i, 8) for i in range (KEY_LEN)]

# variables for each byte of input cipher text:
cipher=[BitVec('cipher_%d' % i, 8) for i in range (cipher_len)]

# variables for each byte of input plain text:
plain=[BitVec('plain_%d' % i, 8) for i in range (cipher_len)]

# variable for each byte of plain text: 1 if the byte in 'a'...'z' 
range:
az_in_plain=[Int('az_in_plain_%d' % i) for i in range 
(cipher_len)]
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SMT/SAT Solvers

● Variables to model the problem

Example (key length = 5)

● Key =             [0x55, 0x03, 0xAB, 0x1C, 0xE5]
● cipher text =  [0x34, 0x61, 0x54, 0x7F,  0x81, ...]
● plain text =    [0x61, 0x62, 0xFF,  0x63, 0x64, ...] 
● az_in_plain=  [  1,        1,       0,       1,        1,  …]

We want to maximize the sum of az_in_plain

BitVec (8 bits)

Int
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SMT/SAT Solvers

● Problem constraints
for i in range(cipher_len):
    # assign each byte of cipher text from the input file:
    s.add(cipher[i]==ord(cipher_file[i]))
    # plain text is cipher text XOR-ed with key:
    s.add(plain[i]==cipher[i]^key[i % KEY_LEN])
    # each byte must be in printable range, or CR of LF:
    s.add(Or(And(plain[i]>=0x20, 
plain[i]<=0x7E),plain[i]==0xA,plain[i]==0xD))
    # 1 if in 'a'...'z' range, 0 otherwise:
    
s.add(az_in_plain[i]==If(And(plain[i]>=ord('a'),plain[i]<=ord('
z')), 1, 0))
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SMT/SAT Solvers

● Solution

s=Optimize()

s.maximize(Sum(*az_in_plain))
if s.check()==unsat:
    return
m=s.model()

test_key="".join(chr(int(obj_to_string(m[key[i]]))) for i in 
range(KEY_LEN))
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SMT/SAT Solvers

● Solution
– Multiple variables can be optimized at the same 

time

– It’s possible to assume that the appearance of 
certain letters together is more likely and use this 
information as an optimization vector

– It’s possible to weigh optimization vectors and 
“educate” the search for solutions
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SMT/SAT Solvers

● How do SMT/SAT solvers work?
– Common theories

● Bit Vectors
– Ideal to represent finite range data types. I.e. 32 bits integers. 

This enables to model “overflows” and “underflows”

● Arrays
– Variable length

● Integers
● Not-interpreted functions

– Given the same inputs, the same output is returned
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SMT/SAT Solvers

● How do SMT/SAT solvers work?
– Base of constraints in normal conjunctive form 

(every boolean formula can be expressed in this 
form)

– SAT solver assigns a truth value to one variable, 
and start making deductions based on that

x1∨x2∨x3
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SMT/SAT Solvers

● How do SMT/SAT solvers work?

x1=true

−x1∨x7⇒ x7=true

−x7∨x5∨−x1⇒ x5=true
...

● It may either assign a value to each variable without 
violating constraints or come to a contradiction. If it comes 
to a contradiction, it has to summarize it in a single clause 
and add it to the base of constraints to avoid it next time
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SMT/SAT Solvers

● How do SMT/SAT solvers work?

x>5∧ y<5∧( y>x∨ y>2)

● Part of this formula requires reasoning in a specific 
domain (i.e. set of integers) and the other part is 
boolean logic that can be expressed in normal 
conjunctive form (SAT solver)

F 1∧F 2∧(F 3∨F 4)
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SMT/SAT Solvers

● How do SMT/SAT solvers work?

F 1∧F 2∧(F 3∨F 4)

SAT SOLVER

F 1=true , F 2=true , F 3=true
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SMT/SAT Solvers

● How do SMT/SAT solvers work?

x>5, y<5, y>x

Theory Solver 
(linear arithmetic)

NO
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SMT/SAT Solvers

● How do SMT/SAT solvers work?

F 1∧F 2∧(F 3∨F 4)

SAT SOLVER

F 1=true , F 2=true , F 4=true

¬(F 1∧F 2∧F 3)
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SMT/SAT Solvers

● How do SMT/SAT solvers work?

x>5, y<5, y>2

Theory Solver 
(linear arithmetic)

Yes x=6, y=3
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Symbolic Execution

● How can SMT/SAT solvers contribute to 
vulnerability finding in source code?

– Symbolic execution
● Technique to analyze programs
● How is the behavior going to be in a potentially 

infinite input set?
● Improve code coverage
● When a problem is found, it can provide a set of 

inputs to reproduce it (as opposed to static 
analysis)
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Symbolic Execution

void foo ( int x, int y) {
int t = 0;

if (x > y) {
t = x;

       } else {
t = y;

}

if (t < x) {
assert false;

}

}

Are there a pair of 
x, y inputs that 
trigger the 
assertion?
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Symbolic Execution

x y t

4 4 0

4 4 4

Assertion is not 
triggered: x == t

Program state 
characterization: 
3 state variables
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Symbolic Execution

x y t

2 1 0

2 1 2

Assertion is not 
triggered: x == t

But, how can we make sure that there are no 
inputs for which the assertion is triggered?
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Symbolic Execution

● Program state redefinition, mapping unknown 

variables (x, y) to symbolic values (x, y)

x y t

x y 0

x y t0

(x> y)⇒ x ,(x≤ y)⇒ y⏞
t 0
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Symbolic Execution

● Is it possible to satisfy the following 
constraints? Is there a solution for this 
equations system?

(x> y)⇒ t0=x

(x≤ y)⇒ t0= y

t0<x
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Symbolic Execution

● Is it possible to satisfy the following 
constraints? Is there a solution for this 
equations system?

(x> y)⇒ t0=x

(x≤ y)⇒ t0= y

t0<x
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Symbolic Execution

● Is it possible to satisfy the following 
constraints? Is there a solution for this 
equations system?

(x> y)⇒ t0=x

(x≤ y)⇒ t0= y

t0<x

(t0<x≤ y=t0)

(t0<t0)
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Symbolic Execution

● Is it possible to satisfy the following 
constraints? Is there a solution for this 
equations system?
– An SMT/SAT solver can bring the answer!

– In general, despite there can be many variables 
involved in a real problem, there aren’t so many 
degrees of freedom: variables tend to be 
conditioned by others

● Depends on the size of the unit that is being analyzed
● If a function is simple, all paths can be analyzed at once
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Symbolic Execution

#!/usr/bin/python
from z3 import *

x = Int('x')
y = Int('y')
t = Int('t')
s = Solver()

s.add(t < x)
s.add(If(x > y, t == x, t == y))

print s.check()
print s.model()

unsat
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Symbolic Execution

● If software being 
analyzed is too 
complex, path 
exploration can be 
used
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Symbolic Execution

Constraints:

t0=x

t0<x

Simpler equations 
system when exploring 
only 1 path

Question is just if this 
path is feasible
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Symbolic Execution

Constraints:

x≤ y=t0

t0<x

Simpler equations 
system when exploring 
only 1 path

Question is just if this 
path is feasible
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Symbolic Execution

● More paths are 
explored but each 
of them is simpler. 
It’s possible to use 
strategies to 
discard unfeasible 
paths.
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Symbolic Execution

● Symbolic execution can be used as a 
complement to real execution (fuzzing / 
testing). I.e:
– A code-coverage tool shows that a program path 

was not executed doing fuzzing

– We take a close case (generated with real input) 
and apply symbolic execution from a known state to 
trigger non-executed paths
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Lab

Lab 6.1: Implement “generate_input” function in 
fuzzer.py to crash main, without doing reverse 
engineering on the binary

● In case of not crashing it, do reverse 
engineering to guide automated inputs 
generation

● In case of not crashing it, analyze the 
source code to guide automated inputs 
generation
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References

● Fuzzing Brute Force Vulnerability Discovery
● Examples obtained from:

– “Quick introduction into SAT/SMT solvers and 
symbolic execution” - Dennis Yurichev

– MITOpenCourseware – Computer System Security 
– Lecture 10: Symbolic Execution – Armando Solar-
Lezama
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