
1Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Reverse Engineering
Class 7

Binary Instrumentation

2Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● What’s this?
● Addition of code to the application original

code that, generally, does not seek to alter its
functional result (transparent)

● Trampolines injection (callbacks)
● Instructions modification (binary translation)
● Source code or binary instrumentation
● Instrumentation previous to execution or

while executing

3Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Why?
● Profiling – gather data for performance

optimization
● Code-coverage
● Behavior analysis (understand functionality)
● Memory analysis (leaks, dangling pointers)
● In-memory fuzzing
● Execution on a different architecture (binary

translation)
● Testing (trigger execution flows)

4Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Applicable to binaries (PE, ELF, classfiles, etc.)
● Binary instrumentation frameworks:

● DynamoRIO (Windows, Linux, Android)
● PIN (Windows, Linux)
● Windows API Monitor (Windows)
● QEMU (Linux)
● ASM (Java)
● Byteman (Java)

5Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● DynamoRIO
● Windows, Linux, Android
● Open source (BSD license)
● AArch32, AArch64, IA-32, x86_64
● http://dynamorio.org

http://dynamorio.org/

6Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Examples
● ./bin64/drrun c ./samples/bin64/libbbsize.so
ls /

7Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Examples
● ./bin64/drrun c ./samples/bin64/libopcodes.so
 ls /

8Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Architecture

9Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Client library
● Dynamic library (PIC)
● Has instrumentation hooks implementation
● Developed by the one that wants to

instrument
● Dynamically links DynamoRIO libraries
● It’s loaded to the instrumented process from

the beginning

10Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Client library receives events from DynamoRIO
through registered callbacks

● Multiple callbacks may be registered for the same
event and there can be multiple client libraries

● dr_client_main
● Client library entry-point
● Extensions initialization and callbacks

registration
● Called when process is created

11Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● DynamoRIO has a general purpose API: it’s not
advisable to “trust” in libraries loaded in the
instrumented process
● Open, read, write files
● Synchronization primitives (I.e. Mutex)
● Memory allocation
● Threads creation
● Etc.

12Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Examples of events to which the client library
can subscribe:

● Basic blocks or instructions creation

● Threads initialization/finalization

● Library loading/unloading

● Syscalls interception
● Signals or exceptions interception

13Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● There are multiple instrumentation APIs
● Multi-Instrumentation Manager

– Works on a 4-pass scheme over the executable
code

– 1) App2App
● Application code transformations, previous to

instrumentation

– 2) Analysis
● Application code analysis, once App2App transformations

are applied. Code is not modified during this stage

14Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Multi-Instrumentation Manager
– 3) Instrumentation

● Application code transformations due to instrumentation.
Can be high level transformations, that require multiple
instructions. I.e. clean-calls insertions

– 4) Instrumentation2Instrumentation
● Pass to view and transform code generated during

instrumentation. It’s possible, for example, to make
optimizations

– Each stage is optional

15Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Multi-Instrumentation Manager
● Callbacks registration for different

instrumentation stages

if (!
drmgr_register_bb_instrumentation_ex
_event(app2app_cb, analysis_cb,
instruction_cb, instr2instr_cb, NULL))
 DR_ASSERT(false);

16Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Multi-Instrumentation Manager
● Instrumentation stage callback

● Called once per basic block instruction

static dr_emit_flags_t
instruction_cb(void* drcontext, void*
tag, instrlist_t* bb, instr_t* instr, bool
for_trace, bool translating, void*
user_data);

17Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Basic blocks creation
● Basic block: instructions sequence that ends

in a flow control instruction

● Instructions representation: instr_t and
instrlist_t (dr_ir_instr.h and
dr_ir_instrlist.h)

● It’s possible to modify, add or remove
instructions

18Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Basic blocks creation
● Previous to the execution of an application

basic block, it’s copied to the “code cache”
and instrumentation events are triggered

● DynamoRIO keeps control of execution at
the end of the basic block to continue
instrumenting with the same strategy (as new
basic blocks are executed)
– Program is not instrumented upfront. Parts never

executed are not instrumented

19Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Instructions insertion
● Meta-instructions

● Transparent for the application, used for
monitoring purposes

● I.e. call to a client library function
● Not instrumented by DynamoRIO

● Application instructions
● Modify application state

20Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● APIs to encode, decode and disassembly
instructions

● Structure: instr_t
● Clean Calls

● Insert a C function call (hook) in the middle of a
basic block

● Function is invoked each time the basic block is
executed

● Application state is preserved (general purpose
registers, floating point registers, stack, etc.)

21Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 7.1

Instrumentation

22Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● How does instrumentation internally work?
● drrun does an execve and libdynamorio.so.6.2

starts executing
● _start is the first function to execute in this library

(implemented in assembly for x86)
● _start relocates the library and calls

privload_early_inject
● This function uses a loader from DynamoRIO to

load the ELF binary -to be instrumented- and
initializes it (dynamorio_app_init)

● Finally dynamo_start is called

23Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● At this point, the process has mapped both the
application to be instrumented (i.e. main) and
the client library where hooks are implemented
(i.e. ins_example.so)

● “dispatch” function is called so DynamoRIO can
keep control of instrumented execution
– This is an infinite loop that executes until process

finishes

– “dispatch” instruments basic blocks, put them to
execute and recovers control (because
instrumented basic blocks return to “dispatch”)

24Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● build_basic_block_fragment function, called by
“dispatch”, creates instrumented basic blocks
– Instrumented basic blocks are called “fragments”

– Fragments are represented by fragment_t
structure

– Example of a call to the 1st instrumented basic block
from main: start parameter has value 0x400144

25Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Main original code:

(gdb) x/10i 0x400144
0x400144: push %rbp
0x400145: mov %rsp,%rbp
0x400148: mov $0x0,%eax
0x40014d: callq 0x400166
0x400152: nop
0x400153: mov $0x3c,%rax
0x40015a: mov $0x0,%rdi
0x400161: syscall
0x400163: nop
0x400164: pop %rbp

void _start() {
 foo();
 asm(
 "nop\n"
 "mov $60, %rax\n"
 "mov $0, %rdi\n"
 "syscall\n"
);
}

26Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● build_basic_block_fragment calls library client
hooks to obtain the final list of instrumented
instructions

● Once the list is obtained,
emit_fragment_common function creates the
new fragment
– An executable segment has to be allocated in

memory for the instructions (as a JIT compiler
would do)

27Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Example of a fragment_t created out of
main’s first basic block:

$2 = {tag = 0x400144 "UH\211",
<incomplete sequence \345\270>, flags =
16777264, size = 435, prefix_size = 0
'\000', fcache_extra = 9 '\t',
 start_pc = 0x54691008 "eH\243",
in_xlate = {incoming_stubs = 0x0,
translation_info = 0x0}, next_vmarea =
0x0, prev_vmarea = 0x546c3090, also = {
 also_vmarea = 0x0, flushtime = 0}}

28Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● You can see there information such as:
– tag: original basic block virtual address

– start_pc: instrumented basic block virtual address

● In /proc/<PID>/maps we can verify how
start_pc address (0x54691008) corresponds to
an executable segment:

54691000-54692000 rwxp 00000000 00:00 0

29Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Instructions at 0x54691008 (instrumented basic
block):

(gdb) x/50i 0x54691008
0x54691008: movabs %rax,%gs:0x0
0x54691013: movabs %gs:0x20,%rax
0x5469101e: mov %rsp,0x18(%rax)
0x54691022: mov 0x2e8(%rax),%rsp
0x54691029: movabs %gs:0x0,%rax
0x54691034: lea -0x2a8(%rsp),%rsp
0x5469103c: callq 0x5468acc0
0x54691041: callq 0x11087
0x54691046: callq 0x5468ad80

30Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● These instructions are instruction2instruction
pass output, and what is finally executed

● In the previous listing, a callq 0x11087
instruction can be spotted
● ins_example.so is mapped to 0x10000
● In 0x1087 offset runtime_cb function is

located
● In instruction2instruction a clean call to this

function was inserted in each basic block

31Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● ins_example.so

0000000000001087 <runtime_cb>:
1087: push %rbp
1088: mov %rsp,%rbp
108b: lea 0x2d7(%rip),%rdi
1092: mov $0x0,%eax
1097: callq ba0 <dr_printf@plt>
109c: nop
109d: pop %rbp
109e: retq

static void
runtime_cb(void) {
 dr_printf("runtime
call to hook
method!\n");
}

32Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● These instructions (callq 0x11087) are clean
calls

● Clean calls are preceded by a call to a function
that saves the context (callq 0x5468acc0) and
succeeded by one that restores the context
(callq 0x5468ad80)

33Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Code seen in instrumentation2instrumentation
pass has a call to 0x400166
● At a C source code level (main.c), this call

corresponds to foo function
● However, if instrumented block calls directly

0x400166, DynamoRIO loses control and won’t
be able to continue instrumenting basic blocks

● Thus, at a fragment level, call to 0x400166 was
substituted by the following code:

34Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

0x54691144: mov $0x0,%eax
...
0x5469118c: movabs %rax,%gs:0x0
0x54691197: movabs %gs:0x20,%rax
0x546911a2: mov 0x18(%rax),%rsp
0x546911a6: movabs %gs:0x0,%rax
0x546911b1: pushq $0x400152
0x546911b6: jmpq 0x546b1030

35Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Binary Instrumentation

● Instead of calling 0x400166, a jump is made to
0x546b1030

● foo call return address is pushed to the stack
● What does 0x546b1030 code do?

– Saves the context

– Calls “dispatch”

● The cycle repeats, instrumenting foo basic
block this time

36Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Based on binary instrumentation frameworks,
high level tools can be built to do run time checks
on the binary

● In example, Valgrind has the capability of
hooking memory allocations and freeings to
detect leaks

● Triton is a DBA framework developed by
Quarkslab with open license and multiplatform
● Combines symbolic execution capabilities with

SMT solvers

37Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

SMT engine used by Triton is z3

38Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Taint analysis
– Trace memory and registers that are controlled by

the user (input)

– Inputs are considered insecure or untrusted. Every
instruction that handles input is particularly
interesting from the security point of view. This is
“what the attacker controls”

– A taint analysis policy has 3 components: 1)
introduction rules, 2) propagation rules, and 3)
check rules

39Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Taint analysis
– Introduction rules: registers, memory

– Propagation rules:
● Over-approximation (Triton)

– False positives

● Accurate approximation
● Sub-approximation

– False negatives

– Propagation is a trade-off between precision and
efficiency (memory + CPU)

40Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

mov ax, 0x1122 ; RAX is untainted
mov al, byte ptr [user_input] ; RAX is tainted
cmp ah, 0x99 ; can we control this comparison?

In this case, over-approximation is going to
assume that the comparison can be controlled by
the user. That’s a false positive

In these cases, symbolic execution can be used to
ask the SMT solver if there is any value that
satisfies the constraint

41Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Symbolic execution
– Convert values from registers and memory to

symbolic

– Make questions that can be answered by an SMT
solver

– Example:
● convert eax register to symbolic
● process an instruction that involves eax symbolic value
● ask an initial value for eax such that once the instruction

is executed, a specific condition is satisfied

42Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis
Triton = TritonContext()
Triton.setArchitecture(ARCH.X86)

rax is now symbolic
Triton.convertRegisterToSymbolicVariable(Triton.registers.eax)

process instruction
Triton.processing(Instruction("\x83\xc0\x07")) # add eax, 0x7

get rax ast
eaxAst =
Triton.getAstFromId(Triton.getSymbolicRegisterId(Triton.registers.e
ax))

constraint
c = eaxAst ^ 0x11223344 == 0xdeadbeaf

print 'Test 5:', Triton.getModel(c)[0] # Out: SymVar_0 = 0xCF8F8DE4

43Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Code emulation
– Process instructions located at a specific virtual

address range:

44Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Code emulation
– Create instructions (opcode + virtual address)

● Instruction(), setOpcode, setAddress

– Ask Triton to process instructions
● Triton.processing(inst)

– Obtain RIP value after executing them (in terms of
virtual addressing)

● ip =
Triton.buildSymbolicRegister(Triton.registers.rip).evaluate
()

45Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Code emulation
– Set concrete values to memory and registers

● Triton.setConcreteMemoryValue(0x601040, 0x00)
● Triton.setConcreteRegisterValue(Triton.registers.rdi,

0x1000)

– Symbolize memory
● Triton.convertMemoryToSymbolicVariable(MemoryAcces

s(address, CPUSIZE.BYTE))

46Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Code emulation
– Obtain concrete values from the memory and

registers
● Triton.getConcreteMemoryValue(MemoryAccess(write+4,

CPUSIZE.DWORD))
● Triton.getConcreteRegisterValue(Triton.registers.rax)

– Instructions can be disassembled and operands
obtained

● inst.getDisassembly()
● inst.getOperands()

47Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Code emulation
– It’s possible to analyze “micro-instructions” or

“atomic instructions” that constitute an instruction
● Many compilers use an intermediate representation (IR)

for this type of instructions

– I.e. movabs rax, 0x4142434445464748 involves:
● Set rax with a specific value
● Increase rip to point to the next instruction

– inst.getSymbolicExpressions()

48Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Code emulation
– It’s possible to analyze which “micro-operation”

modified a registry or a memory address
● Triton.getSymbolicRegisters().items()
● Triton.getSymbolicMemory().items()

– When memory or registers are symbolic
(Triton.buildSymbolicRegister(Triton.registers.ah)),
it’s possible to get the micro-operations that
modified it, or get a concrete value

49Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Code emulation
– Once performed the emulation, it’s possible to

obtain all execution path constraints (result of each
branch)

● getPathConstraints → getBranchConstraints
● I.e: 0x11223344: jne 0x55667788
● Flag: true if branch was taken
● Source address: 0x11223344
● Destination address: 0x55667788 if branch is taken or

next address in case not
● pc: node that represents the branch within the Abstract

Syntax Tree (AST)

50Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 7.2

Symbolic execution (Triton)

51Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab

7.1

Create a client library for DynamoRIO capable
of detecting function parameters that are
pointers to dynamically allocated memory

(x86_64, SystemV ABI)

52Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab

7.2: Use symbolic execution in Triton to find an
input that makes check function return 1:

int check(int i) {
 const unsigned char* c = (unsigned char*)&i;
 if (((c[0] ^ c[1]) == 0x3C) && ((c[0] * c[3]) ==
0x40) && c[1] != 0) {
 return 1;
 }
 return 0;
}

53Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

References

● http://dynamorio.org/docs/
● Triton - dynamic binary analysis framework

– https://github.com/JonathanSalwan/Triton

– https://triton.quarkslab.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

