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Binary Instrumentation

● What’s this?
● Addition of code to the application original 

code that, generally, does not seek to alter its 
functional result (transparent)

● Trampolines injection (callbacks)
● Instructions modification (binary translation)
● Source code or binary instrumentation
● Instrumentation previous to execution or 

while executing
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Binary Instrumentation

● Why?
● Profiling – gather data for performance 

optimization
● Code-coverage
● Behavior analysis (understand functionality)
● Memory analysis (leaks, dangling pointers)
● In-memory fuzzing
● Execution on a different architecture (binary 

translation)
● Testing (trigger execution flows)
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Binary Instrumentation

● Applicable to binaries (PE, ELF, classfiles, etc.)
● Binary instrumentation frameworks:

● DynamoRIO (Windows, Linux, Android)
● PIN (Windows, Linux)
● Windows API Monitor (Windows)
● QEMU (Linux)
● ASM (Java)
● Byteman (Java)
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Binary Instrumentation

● DynamoRIO
● Windows, Linux, Android
● Open source (BSD license)
● AArch32, AArch64, IA-32, x86_64
● http://dynamorio.org

http://dynamorio.org/
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Binary Instrumentation

● Examples
● ./bin64/drrun c ./samples/bin64/libbbsize.so  
ls /
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Binary Instrumentation

● Examples
● ./bin64/drrun c ./samples/bin64/libopcodes.so 
 ls /
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Binary Instrumentation

● Architecture
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Binary Instrumentation

● Client library
● Dynamic library (PIC)
● Has instrumentation hooks implementation
● Developed by the one that wants to 

instrument
● Dynamically links DynamoRIO libraries
● It’s loaded to the instrumented process from 

the beginning



10Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Binary Instrumentation

● Client library receives events from DynamoRIO 
through registered callbacks

● Multiple callbacks may be registered for the same 
event and there can be multiple client libraries

● dr_client_main
● Client library entry-point
● Extensions initialization and callbacks 

registration
● Called when process is created
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Binary Instrumentation

● DynamoRIO has a general purpose API: it’s not 
advisable to “trust” in libraries loaded in the 
instrumented process
● Open, read, write files
● Synchronization primitives (I.e. Mutex)
● Memory allocation
● Threads creation
● Etc.
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Binary Instrumentation

● Examples of events to which the client library 
can subscribe:

● Basic blocks or instructions creation

● Threads initialization/finalization

● Library loading/unloading

● Syscalls interception
● Signals or exceptions interception
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Binary Instrumentation

● There are multiple instrumentation APIs
● Multi-Instrumentation Manager

– Works on a 4-pass scheme over the executable 
code

– 1) App2App
● Application code transformations, previous to 

instrumentation

– 2) Analysis
● Application code analysis, once App2App transformations 

are applied. Code is not modified during this stage
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Binary Instrumentation

● Multi-Instrumentation Manager
– 3) Instrumentation

● Application code transformations due to instrumentation. 
Can be high level transformations, that require multiple 
instructions. I.e. clean-calls insertions

– 4) Instrumentation2Instrumentation
● Pass to view and transform code generated during 

instrumentation. It’s possible, for example, to make 
optimizations

– Each stage is optional
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Binary Instrumentation

● Multi-Instrumentation Manager
● Callbacks registration for different 

instrumentation stages

if (!
drmgr_register_bb_instrumentation_ex
_event(app2app_cb, analysis_cb, 
instruction_cb, instr2instr_cb, NULL))
        DR_ASSERT(false);
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Binary Instrumentation

● Multi-Instrumentation Manager
● Instrumentation stage callback

● Called once per basic block instruction

static dr_emit_flags_t 
instruction_cb(void* drcontext, void* 
tag, instrlist_t* bb, instr_t* instr, bool 
for_trace, bool translating, void* 
user_data);
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Binary Instrumentation

● Basic blocks creation
● Basic block: instructions sequence that ends 

in a flow control instruction

● Instructions representation: instr_t and 
instrlist_t (dr_ir_instr.h and  
dr_ir_instrlist.h)

● It’s possible to modify, add or remove 
instructions
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Binary Instrumentation

● Basic blocks creation
● Previous to the execution of an application 

basic block, it’s copied to the “code cache” 
and instrumentation events are triggered

● DynamoRIO keeps control of execution at 
the end of the basic block to continue 
instrumenting with the same strategy (as new 
basic blocks are executed)
– Program is not instrumented upfront. Parts never 

executed are not instrumented
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Binary Instrumentation

● Instructions insertion
● Meta-instructions

● Transparent for the application, used for 
monitoring purposes

● I.e. call to a client library function
● Not instrumented by DynamoRIO

● Application instructions
● Modify application state
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Binary Instrumentation

● APIs to encode, decode and disassembly 
instructions

● Structure: instr_t
● Clean Calls

● Insert a C function call (hook) in the middle of a 
basic block

● Function is invoked each time the basic block is 
executed

● Application state is preserved (general purpose 
registers, floating point registers, stack, etc.) 
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Demo 7.1

Instrumentation
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Binary Instrumentation

● How does instrumentation internally work?
● drrun does an execve and libdynamorio.so.6.2 

starts executing
● _start is the first function to execute in this library 

(implemented in assembly for x86)
● _start relocates the library and calls 

privload_early_inject
● This function uses a loader from DynamoRIO to 

load the ELF binary -to be instrumented- and 
initializes it (dynamorio_app_init)

● Finally dynamo_start is called
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Binary Instrumentation

● At this point, the process has mapped both the 
application to be instrumented (i.e. main) and 
the client library where hooks are implemented 
(i.e. ins_example.so)

● “dispatch” function is called so DynamoRIO can 
keep control of instrumented execution
– This is an infinite loop that executes until process 

finishes

– “dispatch” instruments basic blocks, put them to 
execute and recovers control (because 
instrumented basic blocks return to “dispatch”)
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Binary Instrumentation

● build_basic_block_fragment function, called by 
“dispatch”, creates instrumented basic blocks
– Instrumented basic blocks are called “fragments”

– Fragments are represented by fragment_t 
structure

– Example of a call to the 1st instrumented basic block 
from main: start parameter has value 0x400144
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Binary Instrumentation

● Main original code:

(gdb) x/10i 0x400144
0x400144: push   %rbp
0x400145: mov    %rsp,%rbp
0x400148: mov    $0x0,%eax
0x40014d: callq  0x400166
0x400152: nop
0x400153: mov    $0x3c,%rax
0x40015a: mov    $0x0,%rdi
0x400161: syscall 
0x400163: nop
0x400164: pop    %rbp

void _start() {
    foo();
    asm(
        "nop\n"
        "mov $60, %rax\n"
        "mov $0, %rdi\n"
        "syscall\n"
    );
}
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Binary Instrumentation

● build_basic_block_fragment calls library client 
hooks to obtain the final list of instrumented 
instructions

● Once the list is obtained, 
emit_fragment_common function creates the 
new fragment
– An executable segment has to be allocated in 

memory for the instructions (as a JIT compiler 
would do)
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Binary Instrumentation

● Example of a fragment_t created out of 
main’s first basic block:

$2 = {tag = 0x400144 "UH\211", 
<incomplete sequence \345\270>, flags = 
16777264, size = 435, prefix_size = 0 
'\000', fcache_extra = 9 '\t', 
  start_pc = 0x54691008 "eH\243", 
in_xlate = {incoming_stubs = 0x0, 
translation_info = 0x0}, next_vmarea = 
0x0, prev_vmarea = 0x546c3090, also = {
    also_vmarea = 0x0, flushtime = 0}}
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Binary Instrumentation

● You can see there information such as:
– tag: original basic block virtual address

– start_pc: instrumented basic block virtual address

● In /proc/<PID>/maps we can verify how 
start_pc address (0x54691008) corresponds to 
an executable segment:

54691000-54692000 rwxp 00000000 00:00 0
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Binary Instrumentation

● Instructions at 0x54691008 (instrumented basic 
block):

(gdb) x/50i 0x54691008
0x54691008: movabs %rax,%gs:0x0
0x54691013: movabs %gs:0x20,%rax
0x5469101e: mov    %rsp,0x18(%rax)
0x54691022: mov    0x2e8(%rax),%rsp
0x54691029: movabs %gs:0x0,%rax
0x54691034: lea    -0x2a8(%rsp),%rsp
0x5469103c: callq  0x5468acc0
0x54691041: callq  0x11087
0x54691046: callq  0x5468ad80
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Binary Instrumentation

● These instructions are instruction2instruction 
pass output, and what is finally executed

● In the previous listing, a callq  0x11087 
instruction can be spotted
● ins_example.so is mapped to 0x10000
● In 0x1087 offset runtime_cb function is 

located
● In instruction2instruction a clean call to this 

function was inserted in each basic block
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Binary Instrumentation

● ins_example.so

0000000000001087 <runtime_cb>:
1087: push   %rbp
1088: mov    %rsp,%rbp
108b: lea    0x2d7(%rip),%rdi
1092: mov    $0x0,%eax
1097: callq  ba0 <dr_printf@plt>
109c: nop
109d: pop    %rbp
109e: retq   

static void 
runtime_cb(void) {  
    dr_printf("runtime 
call to hook 
method!\n");
}
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Binary Instrumentation

● These instructions (callq  0x11087) are clean 
calls

● Clean calls are preceded by a call to a function 
that saves the context (callq  0x5468acc0) and 
succeeded by one that restores the context 
(callq  0x5468ad80)
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Binary Instrumentation

● Code seen in instrumentation2instrumentation 
pass has a call to 0x400166
● At a C source code level (main.c), this call 

corresponds to foo function
● However, if instrumented block calls directly 

0x400166, DynamoRIO loses control and won’t 
be able to continue instrumenting basic blocks

● Thus, at a fragment level, call to 0x400166 was 
substituted by the following code:
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Binary Instrumentation

0x54691144: mov    $0x0,%eax
...
0x5469118c: movabs %rax,%gs:0x0
0x54691197: movabs %gs:0x20,%rax
0x546911a2: mov    0x18(%rax),%rsp
0x546911a6: movabs %gs:0x0,%rax
0x546911b1: pushq  $0x400152
0x546911b6: jmpq   0x546b1030
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Binary Instrumentation

● Instead of calling 0x400166, a jump is made to 
0x546b1030

● foo call return address is pushed to the stack
● What does 0x546b1030 code do?

– Saves the context

– Calls “dispatch”

● The cycle repeats, instrumenting foo basic 
block this time
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Dynamic Binary Analysis

● Based on binary instrumentation frameworks, 
high level tools can be built to do run time checks 
on the binary

● In example, Valgrind has the capability of 
hooking memory allocations and freeings to 
detect leaks

● Triton is a DBA framework developed by 
Quarkslab with open license and multiplatform
● Combines symbolic execution capabilities with 

SMT solvers
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Dynamic Binary Analysis

SMT engine used by Triton is z3
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Dynamic Binary Analysis

● Taint analysis
– Trace memory and registers that are controlled by 

the user (input)

– Inputs are considered insecure or untrusted. Every 
instruction that handles input is particularly 
interesting from the security point of view. This is 
“what the attacker controls”

– A taint analysis policy has 3 components: 1) 
introduction rules, 2) propagation rules, and 3) 
check rules
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Dynamic Binary Analysis

● Taint analysis
– Introduction rules: registers, memory

– Propagation rules:
● Over-approximation (Triton)

– False positives

● Accurate approximation
● Sub-approximation

– False negatives

– Propagation is a trade-off between precision and 
efficiency (memory + CPU) 
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Dynamic Binary Analysis

mov ax, 0x1122                ; RAX is untainted
mov al, byte ptr [user_input] ; RAX is tainted
cmp ah, 0x99                  ; can we control this comparison?

In this case, over-approximation is going to 
assume that the comparison can be controlled by 
the user. That’s a false positive

In these cases, symbolic execution can be used to 
ask the SMT solver if there is any value that 
satisfies the constraint
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Dynamic Binary Analysis

● Symbolic execution
– Convert values from registers and memory to 

symbolic

– Make questions that can be answered by an SMT 
solver

– Example: 
● convert eax register to symbolic
● process an instruction that involves eax symbolic value
● ask an initial value for eax such that once the instruction 

is executed, a specific condition is satisfied
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Dynamic Binary Analysis
Triton = TritonContext()
Triton.setArchitecture(ARCH.X86)

# rax is now symbolic
Triton.convertRegisterToSymbolicVariable(Triton.registers.eax)

# process instruction
Triton.processing(Instruction("\x83\xc0\x07")) # add eax, 0x7

# get rax ast
eaxAst = 
Triton.getAstFromId(Triton.getSymbolicRegisterId(Triton.registers.e
ax))

# constraint
c = eaxAst ^ 0x11223344 == 0xdeadbeaf

print 'Test 5:', Triton.getModel(c)[0] # Out: SymVar_0 = 0xCF8F8DE4
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Dynamic Binary Analysis

● Code emulation
– Process instructions located at a specific virtual 

address range:



44Reverse Engineering | Class 7 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Dynamic Binary Analysis

● Code emulation
– Create instructions (opcode + virtual address)

● Instruction(), setOpcode, setAddress

– Ask Triton to process instructions
● Triton.processing(inst)

– Obtain RIP value after executing them (in terms of 
virtual addressing)

● ip = 
Triton.buildSymbolicRegister(Triton.registers.rip).evaluate
()
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Dynamic Binary Analysis

● Code emulation
– Set concrete values to memory and registers

● Triton.setConcreteMemoryValue(0x601040, 0x00)
● Triton.setConcreteRegisterValue(Triton.registers.rdi, 

0x1000)

– Symbolize memory
● Triton.convertMemoryToSymbolicVariable(MemoryAcces

s(address, CPUSIZE.BYTE))
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Dynamic Binary Analysis

● Code emulation
– Obtain concrete values from the memory and 

registers
● Triton.getConcreteMemoryValue(MemoryAccess(write+4, 

CPUSIZE.DWORD))
● Triton.getConcreteRegisterValue(Triton.registers.rax)

– Instructions can be disassembled and operands 
obtained

● inst.getDisassembly()
● inst.getOperands()
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Dynamic Binary Analysis

● Code emulation
– It’s possible to analyze “micro-instructions” or 

“atomic instructions” that constitute an instruction
● Many compilers use an intermediate representation (IR) 

for this type of instructions

– I.e. movabs rax, 0x4142434445464748 involves:
● Set rax with a specific value
● Increase rip to point to the next instruction

– inst.getSymbolicExpressions() 
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Dynamic Binary Analysis

● Code emulation
– It’s possible to analyze which “micro-operation” 

modified a registry or a memory address
● Triton.getSymbolicRegisters().items()
● Triton.getSymbolicMemory().items()

– When memory or registers are symbolic 
(Triton.buildSymbolicRegister(Triton.registers.ah)), 
it’s possible to get the micro-operations that 
modified it, or get a concrete value
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Dynamic Binary Analysis

● Code emulation
– Once performed the emulation, it’s possible to 

obtain all execution path constraints (result of each 
branch)

● getPathConstraints → getBranchConstraints
● I.e: 0x11223344: jne 0x55667788
● Flag: true if branch was taken
● Source address: 0x11223344
● Destination address: 0x55667788 if branch is taken or 

next address in case not
● pc: node that represents the branch within the Abstract 

Syntax Tree (AST)
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Demo 7.2

Symbolic execution (Triton)
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Lab

7.1

Create a client library for DynamoRIO capable 
of detecting function parameters that are 
pointers to dynamically allocated memory 

(x86_64, SystemV ABI)
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Lab

7.2: Use symbolic execution in Triton to find an 
input that makes check function return 1:

int check(int i) {
  const unsigned char* c = (unsigned char*)&i;
  if (((c[0] ^ c[1]) == 0x3C) && ((c[0] * c[3]) == 
0x40) && c[1] != 0) {
    return 1;
  }
  return 0;
}
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References

● http://dynamorio.org/docs/
● Triton - dynamic binary analysis framework

– https://github.com/JonathanSalwan/Triton

– https://triton.quarkslab.com
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