
1Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Reverse Engineering
Class 8

Exploit Writing I
Stack and Integer Overflow

2Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● What’s a stack? (x86)
● Memory area used to store local variables,

function parameters, saved registers, return
addresses (in function calls) and stack
dynamically allocated memory

● Each thread has 2 stacks:
● Stack in user space
● Stack in kernel space (when thread

executes a syscall)
● Why?

3Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● What’s a stack? (x86)
● Stack is not shared between threads: no concurrency

issues for data stored there
● User space stacks are generally in high virtual memory

addresses and, in x86 / x86_64, grow towards lower
virtual memory addresses

● Top of stack is pointed by ESP register (RSP in x86_64)
– A stack growing does not necessarily implies memory

allocation: memory may be already allocated and only the
register that points to the top of the stack is modified

● Stacks have a maximum capacity defined when the
thread is created (I.e. 2MB for user stacks)

4Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

ENTRY(entry_SYSCALL_64)

...

movq %rsp, PER_CPU_VAR(rsp_scratch)
movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp

...
arch/x86/entry/entry_64.S

(gdb) print $rsp
$1 = (void *) 0x7ffcf152c368

(gdb) print $rsp
$2 = (void *) 0xffffc90000b40000

User-space stack pointer

Kernel-space
stack pointer

Syscalls entry point (x86_64, Linux kernel)

5Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Stacks in Linux (kernel)
● sys_clone (thread/process creation)
● _do_fork (fork.c)
● copy_process (fork.c)
● dup_task_struct (fork.c)
● alloc_thread_stack_node (fork.c)
● __vmalloc_node_range (vmalloc.c)

6Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Stack in Linux (kernel)
● struct task_struct {

…

void *stack;

…

}

include/linux/sched.h

7Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow
● Breakpoint in syscall entry (x86_64)

PID Stack top Stack bottom
(current->stack)

Size

768 0xffffc90000bd8000 0xffffc90000bd4000 16384

725 0xffffc90000694000 0xffffc90000690000 16384

731 0xffffc900006d4000 0xffffc900006d0000 16384

768 0xffffc90000bd8000 0xffffc90000bd4000 16384

731 0xffffc900006d4000 0xffffc900006d0000 16384

8Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Stack use
● Instructions that implicitly modify the stack (x86 /

x86_64)
● PUSH, POP, PUSHAD, POPAD, CALL, LEAVE,

RET, RET n
● The number of bytes affected in each of this

operations is related to the architecture natural
size. In example, in x86_64 a CALL will push 8
bytes to the stack containing the return address

● Instructions that explicitly modify the stack
● I.e. SUB ESP, 10h

9Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Examples

10Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Examples

11Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Stack overflow is a type of vulnerability caused by a memory
corruption

● Independent from the operating system and may apply to
different architectures. We will study it in x86/x86_64

● Allows to take control of the instruction pointer and/or modify
local variables in a function (data attacks)

● This is possible because data (writable) is mixed with pointers
to code within the same stack:
– return addresses

– pointers to vtables (that contain pointers to code)

– pointers to exception handlers

● Vulnerability described in “Smashing The Stack For Fun and
Profit” paper in 1996, by Elias Levy

12Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Application Binary Interface for CALLs (x86)

13Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Where is the vulnerability?

void main(){
 ...

func(buff, buff_size);
}

void func (const char* buff, size_t buff_size) {
char local_buffer[8];
memcpy((void*)local_buffer, (const void*)buff,

buff_size);
}

14Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

15Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

16Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

17Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow
Pointer to buff
(main local
variable, in stack)

buff_size: 32
bytes

Parameters to
“func” (in stack)

buff in stack: 32 bytes,
from 0x00 to 0x1F

18Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

Return address to
main (in stack)

Parameters to “func”: pointer to
buff and buff_size (in stack)

19Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow
memcpy destination buffer.
Capacity: 8 bytes. func local
variable: local_buffer (stack)

memcpy source
buffer (pointer to
buff) Number of

bytes to
copy (32)

memcpy
destination
buffer. 8 bytes
(stack garbage
by now)

Pushed
ebp when
entering
func

Return address
to main (when
exiting func)

Parameters to
call func

20Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow
Ex return address from func to
main. Now it has bytes from
copied buffer (out of
local_buffer boundaries)

Ex parameters to
func (overwritten) These bytes

were not
overwritten

Returned to execute an address indicated by those bytes
from the overflown buffer located where the return
address from func to main was present

21Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Memory corruption analysis
● memcpy function (called from func) copied

bytes beyond destination array boundaries
(local_buffer)

● When overflowing boundaries, stack is
corrupted. Local variables from func, pushed
EBP and func return address are overwritten

● When returning from func to main, a
corrupted return address from the stack is
used to set EIP

22Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Is memcpy an insecure function?
● Are there any other functions that may cause

an overflow?
● What is an underflow?

23Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Is memcpy an insecure function?
● No but we need to make sure that:

● There is enough space in destination buffer
● There are enough bytes to copy in source buffer

● Are there any other functions that may cause an
overflow?
● Any function that copies memory (I.e. strcpy)

● What is an underflow?
● An overflow but in the opposite direction

24Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Exploitability
● Attacker controls EIP, and now?
● If stack addresses were predictable (not-

randomized) and stack executable, scenario
is favorable to the attacker
● Jump to execute in the stack
● This is not possible anymore in modern

operating systems, but may be in some
embedded systems

25Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

26Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Exploitability
● If stack addresses were predictable within a

certain range, a technique called NOP sled
can be used to increase the probability of
taking control of the execution

27Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

28Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● With randomized stacks, a pointer leak is
necessary

● With non-executable stacks, it’s necessary to use
more advanced exploitation techniques like
Return-Oriented-Programming (ROP)

● In addition to controlling EIP, it’s possible on some
scenarios to take advantage of the corruption of
local variables or other data present in the stack.
Data attacks

● There can be read overflows useful to leak
information

29Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Mitigations
● Compilers: stack canary
● Compilers: local variables reordering. Buffers

are put together previous to canaries to avoid
overflows that corrupt local variables
● It’s not always possible. Buffers in structs

● OS: randomized stack (unpredictable
addresses)

● OS: non-executable stacks (NX bit in x86)

30Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● When a function protected by a stack canary is
entered:

(gdb) x/3i $rip
=> 0x4005c5 <main+15>: mov %fs:0x28,%rax
 0x4005ce <main+24>: mov %rax,-0x8(%rbp)
 0x4005d2 <main+28>: xor %eax,%eax

(gdb) print/x $rax
$1 = 0xb998a401c0724300

(gdb) x/1xg ($rbp-0x8)
0x7fffffffdef8: 0xb998a401c0724300

31Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Stack canaries (user space)

32Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Stack canaries (user space)
● %fs selector points to a structure in thread-

local-storage (tls.h): Thread Control Block

typedef struct
{
 ...
 uintptr_t stack_guard;
 ...
} tcbhead_t;

33Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Stack canaries (user space)
● In x86_64 %fs selector is set during initialization of the

dynamic loader (init_tls) with syscall arch_prctl
● Each thread sets a base address for the %fs selector.

Then it’s used with an index
● Stack canary is a number that changes in each

execution
● It’s pushed to the stack at the beginning of the function,

and its integrity checked before returning
● Thus, to overflow a buffer and return successfully, we

have to know it -and replace it by itself-. It’s necessary
to exploit an information leak vulnerability first

34Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

elf/rtld.c (glibc)

Canary is stored in
Thread Control Block
area.

Canary lower byte is
cleared

A random value is
obtained for the
canary: _dl_random

35Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Task stack canary in Linux (kernel)
● struct task_struct {

…

unsigned long stack_canary;

…

} include/linux/sched.h

Loaded in dup_task_struct function (kernel/fork.c):

tsk->stack_canary = get_random_long();

36Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Task stack canaries (Linux kernel)
● In x86_64 GCC uses %gs selector with offset

0x28, that corresponds to “percpu storage
area” in kernel, to read the stack canary in
run time

● When switching tasks, kernel has to update
%gs:0x28 area with the stack canary from
the new task

37Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

arch/x86/entry/entry_64.S

/*
 * %rdi: prev task
 * %rsi: next task
 */
ENTRY(__switch_to_asm)

...

#ifdef CONFIG_CC_STACKPROTECTOR
movq TASK_stack_canary(%rsi), %rbx
movq %rbx, PER_CPU_VAR(irq_stack_union)

+stack_canary_offset
#endif

38Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Stack Overflow

● Stack canaries (Linux kernel)

39Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 8.1

Stack overflow in kernel space

40Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Buffer Overflows

● Memory overflows can occur in the heap
– More difficult to exploit

– Object data allocated in the heap can be corrupted
(data attacks)

– Pointers to functions or vtables (that contain
pointers to functions) can be overwritten

– Dynamic memory allocator structures can be
corrupted, leading to memory read/write primitives

41Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

● Overflow in unsigned data types (Linux x86_64):
– unsigned char: 1 byte (0x00… 0xFF)

– unsigned short: 2 bytes (0x00 … 0xFFFF)

– unsigned int: 4 bytes (0x00 … 0xFFFFFFFF)

unsigned long a = 0xFFFFFFFFFFFFFFFE;

a = a + 0x5;

printf("a: %lu\n", a);

42Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

Operation result is 0x3 and CPU state register is
modified when this type of overflow occurs, turning
on the carry flag

43Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

● Overflow in signed data types (x86_64):
– Char - 1 byte: 0 0 0 0 0 0 0 0

● First bit: sign
● Can represent: -128 … -1, 0, 1 … 127

long a = 0x7FFFFFFFFFFFFFFF;

printf("a (before): %ld\n", a);

a = a + 0x1;

printf("a (after): %ld\n", a);

44Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

Operation result is -9223372036854775808, and
CPU state register is modified when this type of
overflow occurs, turning on the overflow flag

45Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

● Note: OF flag is turned on when the sign bit is
modified in the register. If the compiler uses a
larger register to operate, this does not happen
(but the overflow yes). I.e.:

char a = 0x7F;

printf("a (before): %d\n", a);

a = a + 0x1;

printf("a (after): %d\n", a);

46Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

Operation result is -128, and the overflow flag is
not turned on

47Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

#define HEADER_LENGTH 15
#define MAX_BUFFER_LIMIT (112 + HEADER_LENGTH)
const char global_buffer[MAX_BUFFER_LIMIT] = { 0x0 };
int main(void) {
 char user_data_bytes_requested = 127; // User input: 127 data bytes
 char total_data_requested = user_data_bytes_requested +
HEADER_LENGTH;
 if (total_data_requested > MAX_BUFFER_LIMIT) {
 goto fail;
 }
 printf("total_data_requested: %u - buffer size: %u\n",
 (unsigned int)total_data_requested, MAX_BUFFER_LIMIT);
 return 0;
fail:
 return -1;
}

● Why are integer overflows relevant from the
security point of view?

48Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

● User requested 127 bytes, that when added to the
header length are 142 bytes in total

● However, that value generates an overflow when
stored in a variable of char type (that can only store
values in the range -128 … 127)

● Real stored value in the variable is -114

char total_data_requested =
user_data_bytes_requested + HEADER_LENGTH;

49Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

● Comparison returns false because -114 < 127. Thus,
execution continues instead of failing

● Now, then casting “total_data_requested” to unsigned
we have a value of 142 to operate on a buffer of 127

● If a copy is made, a memory overflow will occur

● If a read is made, information will be leaked

● If this is combined with a cast to a larger data type with
sign extension, delta between the size of the buffer
and the value to be used would be even larger

if (total_data_requested > MAX_BUFFER_LIMIT) {
 goto fail;
}

50Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

#define HEADER_SIZE 15U

int main(void) {

 unsigned char user_data_size = 250U;

 unsigned char buffer_size = user_data_size + HEADER_SIZE;

 char* buffer = (char*)malloc(buffer_size);

 printf("buffer_size: %u\n", buffer_size);

 return 0;
}

● Why are integer overflows relevant from the
security point of view?

51Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

● That assignment generates an overflow because
buffer_size can store up to value 255. Value 265 ends up
being 9

● Thus, 9 bytes of memory will be allocated, being
“user_data_size” 250. That will generate a memory
overflow

● In some scenarios, a malloc that returns 0 can be used
to write the page that starts with virtual address 0. In
modern operating systems, this page cannot be mapped

unsigned char buffer_size = user_data_size +
HEADER_SIZE;

52Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow
● Operators that can cause overflows:

Table from “Secure Coding in C and C++”

53Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow
● How can it be prevented?

– Use unsigned data types to represent sizes. size_t
is as a standard data type for that (generally with a
size equal to the size of a pointer)

– Avoid implicit casting and downcasting.
Downcasting can, in addition to data truncation,
modify the sign value

– In case of upcasting, be careful with sign extension
(followed by an unsigned cast)

54Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow
● How can it be prevented?

– Use data types larger than the maximum value to
be represented. I.e. if 2 unsigned chars are added,
510 is the maximum value that can be represented.
An unsigned short data type can store that value
(and any value up to 65535)

– Include checks before of after operation if applies.
Is the addition result less than any of the addends?
Constants like INT_MAX, etc. defined in “limits.h”
can be used

● Code has to remain legible
● Avoid performance impact in release mode

55Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow
● How can it be prevented?

– Be careful with multiplatform code: different
platforms may have different sizes for the same
data type (I.e.: long is 8 bytes in Linux x86_64 and
4 in Windows x86_64). Thus, use standard data
types as those available in “stdint.h”:

● uint8_t
● uint32_t
● int32_t
● …

● In addition to overflows, there can be underflows or
reverse wrap-arounds

56Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow
● Data type sizes for most common platforms:

Table from “Secure Coding in C and C++”

57Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Signed comparisons

#define MAX_ALLOCATION_SIZE 0xFF
int main(void) {
 // User input.
 int user_requested_buffer_size = -1;
 if (user_requested_buffer_size > MAX_ALLOCATION_SIZE) {
 goto fail;
 }
 char* buff = (char*)malloc(user_requested_buffer_size);
 printf("user_requested_buffer_size: %u\n",
user_requested_buffer_size);
 printf("buff: %p\n", buff);

 return 0;
fail:
 return -1;
}

● What’s the security problem here?

58Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Signed comparisons
● What’s the security problem here?

Signed comparison (jump-greater): 2 signed
integers are being compared. If it were
unsigned, there would be a jump-above

“malloc” will consider this
parameter as unsigned

59Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Signed comparisons
● When trying to allocate a huge amount of memory

(0xFF...FF), malloc fails returning a NULL pointer. If
malloc failure were not properly handled, subsequent
operations may corrupt memory

● A huge memory allocation may cause a Denial Of
Service and can facilitate heap sprays

● How can this be prevented?

– Avoid or analyze implicit casting

– Analyze the comparison sign (signed vs unsigned)

– Use unsigned values to represent quantities or
sizes

60Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Signed comparisons

#define MAX_ALLOCATION_SIZE 0xFFU
int main(void) {
 // User input.
 unsigned int user_requested_buffer_size = -1;
 if (user_requested_buffer_size > MAX_ALLOCATION_SIZE) {
 goto fail;
 }
 char* buff = (char*)malloc(user_requested_buffer_size);
 printf("user_requested_buffer_size: %u\n",
user_requested_buffer_size);
 printf("buff: %p\n", buff);

 return 0;
fail:
 return -1;
}

● And now?

61Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Signed comparisons
● And now?

Unsigned comparison (jump-above). Ends up
jumping

62Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Integer Overflow

● Why compilers do not protect the developer from this
scenarios?

– In the C standard, overflows and underflows are
undefined behavior

– Compilers optimize for performance, and do not
add checks overhead (unnecessary for most cases)

– Avoiding undefined behaviors is a responsibility of
the developer

63Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab

8.1: Stack overflow in user space

64Reverse Engineering | Class 8 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

References

● Secure Coding in C and C++. Robert C.
Seacord.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64

