
1Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Reverse Engineering
Class 9

Exploit Writing II
Use After Free

2Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

Polymorphism and virtual methods

3Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

class A {
public:

void m1();
virtual void m2();

};

class B : public A {
public:

void m1();
void m2();

};

A* a = new A();
A* a2 = new B();
A a3;
B* b = new B();
B* b2 = new A();
B b3;

a->m1();
b->m1();

a->m2();
b->m2();

a2->m1();
a2->m2();

a3.m1();
b3.m1();

a3.m2();
b3.m2();

Which method is
executed?

4Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

class A {
public:

void m1();
virtual void m2();

};

class B : public A {
public:

void m1();
void m2();

};

A* a = new A();
A* a2 = new B();
A a3;
B* b = new B();
B* b2 = new A();
B b3;

a->m1(); // A::m1
b->m1(); // B::m1

a->m2(); // A::m2
b->m2(); // B::m2

a2->m1(); // A::m1
a2->m2(); // B::m2

a3.m1(); // A::m1
b3.m1(); // B::m1

a3.m2(); // A::m2
b3.m2(); // B::m2

Which method is
executed?

5Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Virtual methods
● What to execute is decided in run time

A* a;
if (rand() % 2) {

a = new A();
} else {

a = new B();
}
a->m();

class A {
public:

virtual void m();
};

class B : public A {
public:

void m();
};

6Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Virtual methods
● There isn’t a single possible target to generate a direct

CALL in compile time
● Indirect CALL: depends on run time data

● Have a performance cost
– In C++ a method is not virtual unless declared as such

– In Java methods are virtual by default. However, optimizations
are made to avoid performance penalty when not needed

● Non-virtual methods
● Target is known in compile time and is unique
● Better performance

7Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

8Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Virtual methods table (vtable)
– If a class has virtual methods, there is a pointer in

the object to a table with pointers to virtual methods
● If there are no virtual methods, this pointer does not exist

and memory is saved (the object looks like a C struct)

– When a class inherits from other classes, vtable
includes vtables from parent classes

9Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

10Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

Call site for a virtual method

11Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● %rax = *(%rbp – 0x28)
● Read the pointer to the object from a local

variable and store the value in %rax register
– I.e: variable “a”

● Object can be of A or B type, depending o
what has been assigned to “a” variable in run
time

● %rax = *(%rax)
● %rax now points to A or B class vtable

12Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● %rax = *(%rax)
● %rax now points to “m” method (located in

position 0 of the vtable)
● “m” method is in the same position 0 of A and

B class vtables
● Code dereferences “m” method without

knowing from which vtable will be obtained
in run time. All it’s known is that the
method is in vtable’s first entry

13Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● %rdx = *(%rbp – 0x28)
● %rdi = %rdx

● In %rdi goes the first parameter for the called
function (x86_64 SystemV ABI)

● This first parameter is a pointer to the object
(“this” in C++)

● CALL *%rax
● Indirect call to “m” method. “m” address was

previously loaded in %rax register

14Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● The interesting thing, from the exploitation point
of view, is the mix between data and code:
there are pointers to code in data areas
– The object (and, thus, the pointer to the vtable) may

be located in the stack, heap or .data sections

– vtables are in .rodata section

– Vtable entries point to methods located in .text
section

15Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

Class A vtable

Class B vtable

16Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

Is there polymorphism in C?

17Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

typedef struct _super_t {
 void(*m)(void); // virtual method
} super_t;

((super_t*)a)->m = mA;

(*(a->m))();

18Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 9.1

Example of polymorphism in C

19Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

class A {
public:

virtual void m();
};

int main() {
A* a = new A();
...
delete a;
...
a->m();
return 0;

}

What is the problem?

20Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

21Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

22Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

class A {
public:

virtual void m();
};

A* f(void){
A a;
...
return &a;

}

int main() {
A* a = f();
...
a->m();
return 0;

}

What is the problem?

23Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

24Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

25Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

A* a_global;

void callback(A* a){
a_global = a;
return;

}

What is the problem?

void f(void) {
if (a_global != NULL)
{

a_global->m();
}
return;

}

26Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Looks like a trivial problem but it’s not: in complex
systems there may be references (pointers) to an
object from different places and can be even modified
concurrently

27Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● If an object is deleted, what should be done
with references? While deleting references,
what would happen if a different thread uses a
reference concurrently?

28Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● What is the object life cycle and how to manage
it?

● Temporary objects
● Stored in the stack
● Do not save references in global variables
● Do not send references up in the stack
● It’s safe to send references down in the stack

29Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Pointers in C++11 / boost:
● std::unique_ptr
● std::shared_ptr
● std::weak_ptr

● RAII pattern: Resource Acquisition is
Initialization
● Memory is just another resource

30Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● std::unique_ptr
● std::make_unique<A>(...);
● There is no copy constructor, only move

constructor
● 1 object 1 pointer relationship
● No synchronization cost
● Small memory footprint: size of a raw pointer
● Raw pointer can be accessed and “→”

operator used

31Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● GNU ISO C++ (unique_ptr.h)

/** Takes ownership of a pointer.
 ...
 */
 explicit
 unique_ptr(pointer __p) noexcept
 : _M_t()
 {

std::get<0>(_M_t) = __p;
static_assert(!is_pointer<deleter_type>::value,

 "constructed with null function pointer deleter");
 }

32Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● GNU ISO C++ (unique_ptr.h)

/// Move constructor.
 unique_ptr(unique_ptr&& __u) noexcept
 : _M_t(__u.release(),
std::forward<deleter_type>(__u.get_deleter())) { }

33Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● GNU ISO C++ (unique_ptr.h)
 /// Dereference the stored pointer.
 typename add_lvalue_reference<element_type>::type
 operator*() const
 {

__glibcxx_assert(get() != pointer());
return *get();

 }

 /// Return the stored pointer.
 pointer
 operator->() const noexcept
 {

_GLIBCXX_DEBUG_PEDASSERT(get() != pointer());
return get();

 }

34Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● GNU ISO C++ (unique_ptr.h)

/// Destructor, invokes the deleter if the stored pointer is
not null.
 ~unique_ptr() noexcept
 {

auto& __ptr = std::get<0>(_M_t);
if (__ptr != nullptr)
 get_deleter()(__ptr);
__ptr = pointer();

 }

35Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● std::shared_ptr
● std::make_shared<A>(...);
● There is copy constructor
● 1 object, 1 or more pointers relationship
● Synchronization cost is paid. Object is

destroyed when the last reference is lost
● Memory footprint: (raw pointer size)*2
● Raw pointer can be accessed and “→”

operator used

36Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● GNU ISO C++ (shared_ptr.h)

 template<typename _Tp, _Lock_policy _Lp>
 class __shared_ptr
 {

...
_Tp* _M_ptr; // Contained pointer.

 __shared_count<_Lp> _M_refcount; // Reference
counter.
 };

37Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● GNU ISO C++ (shared_ptr.h)

template<typename _Tp1>
 __shared_ptr(const __shared_ptr<_Tp1,
_Lp>& __r)

: _M_ptr(__r._M_ptr),
_M_refcount(__r._M_refcount) // never throws

{ __glibcxx_function_requires(_ConvertibleCon
cept<_Tp1*, _Tp*>) }

Copy constructor

38Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● std::weak_ptr
● Created in relationship to a shared_ptr
● Does not count toward object’s destruction
● weak ptr can only be used to obtain a

shared_ptr (if the object was not destroyed)
– While object is in use, a shared ptr that prevents

deletion exists

39Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Good practice: assign NULL value to variables
that held an object pointer after freeing it

● Languages like Java, .NET, Python, etc. do not
allow to manage memory manually *
● * with the exception of specific APIs (I.e.

Unsafe in Java)
● Polymorphism is implemented with vtables too
● Not vulnerable to Use After Free unless there

is a bug in the VM
– Performance and memory footprint costs are paid

40Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Demo 9.2

Stack Use After Free exploitation (kernel space)

41Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Exploiting Use After Free in heap has additional challenges:
how to overwrite freed space? How to predict memory location
where “fake vtable” would be located?

● Heap is a memory area where process can store variable (and
unknown) length data, in run time. I.e. arrays, streams, objects,
etc.

● Processes generally use dynamic memory allocators in user
space (provided by the operating system) to manage the Heap:
– Simplification or abstraction (reserved vs. committed memory)

– Granularity (allocate a few bytes only)

– Contiguous memory at virtual addressing level (not necessarily at
physical addressing level)

– Anti-fragmentation and memory management (caches)

42Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Every process has at least 1 heap
● Windows has multiple APIs to manage memory and

supports multiple heaps:
– HeapCreate / HeapDelete

– HeapAlloc / HeapFree

– VirtualAlloc / VirtualFree

– malloc (MSVCRT)

● In Linux
– mmap is used to allocate memory segments

– brk / sbrk are used increase or reduce the heap size

– malloc (glibc)

43Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● brk syscall (Linux)
– Defined in mm/mmap.c (kernel)

– Changes “data segment” size (heap)
● This means mapping or unmapping physical memory

– Heap grows towards higher virtual memory
addresses (stack towards lower virtual memory
addresses)

44Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● brk syscall (Linux)

struct mm_struct {
...
unsigned long start_brk, brk, start_stack;
...

}
include/linux/mm_types.h (Linux kernel)

mm_struct structure describes a process memory, at kernel level.
In particular, start_brk and brk show the heap location.

45Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
int main(void) {

char* buff = (char*)malloc(1);
if (buff != NULL) {

free(buff);
buff = NULL;

}
 return 0;
}

When calling “malloc” for the first time, glibc has to initialize and
extend the process heap. Brk syscall will be used for that.

Process map before calling malloc:
...
00601000-00602000 … main
7ffff7a24000-7ffff7bce000 … libc.so.6
...

46Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
In this example case, glibc executes brk syscall with value
0x623000.

When entering sys_brk (kernel):
(gdb) print/x ((struct mm_struct*)(current->mm))->start_brk
$18 = 0x602000
(gdb) print/x ((struct mm_struct*)(current->mm))->brk
$19 = 0x602000

Process heap has size 0 at this moment.

When finalizing sys_brk:

(gdb) print/x ((struct mm_struct*)(current->mm))->start_brk
$18 = 0x602000
(gdb) print/x ((struct mm_struct*)(current->mm))->brk
$19 = 0x623000

47Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
Process map when returning from sys_brk syscall:

...
00601000-00602000 rw-p … main
00602000-00623000 rw-p ... [heap]
7ffff7a24000-7ffff7bce000 r-xp … libc.so.6
…

malloc finally returned address 0x602260, within heap segment.

48Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
int main(void) {
 unsigned int iter_count = 10U;
 char* previous_buff = NULL;

 while (iter_count-- > 0U) {
 char* buff = (char*)malloc(1U);

 printf("Buff: %p - Delta with previous: %lu\n", buff,
(unsigned long)(buff - previous_buff));
 previous_buff = buff;

}
 return 0;
}

49Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
Buff: 0x1ca4260 - Delta with previous: 30032480
Buff: 0x1ca4690 - Delta with previous: 1072
Buff: 0x1ca46b0 - Delta with previous: 32
Buff: 0x1ca46d0 - Delta with previous: 32
Buff: 0x1ca46f0 - Delta with previous: 32
…

Buff: 0x9b8260 - Delta with previous: 10191456
Buff: 0x9b8690 - Delta with previous: 1072
Buff: 0x9b86b0 - Delta with previous: 32
Buff: 0x9b86d0 - Delta with previous: 32
Buff: 0x9b86f0 - Delta with previous: 32
...

50Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
Memory addresses when memory chunks are
allocated are not completely random. From the previous
traces it’s possible to assume:
● Allocator tries not to fragment the memory (contiguous

allocations)
● Minimum size between 2 chunks (including metadata)

is 32 bytes
● Even though addresses are different, endings are

equal due to alignment

If a chunk in the middle of this sequence is freed and a
new allocation of the same size happens, what’s the
most likely address for the new chunk?

51Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
Buff: 0x1f38260 - Delta with previous: 32735840
Buff: 0x1f38690 - Delta with previous: 1072
Buff: 0x1f386b0 - Delta with previous: 32
Buff: 0x1f386d0 - Delta with previous: 32
Buff: 0x1f386f0 - Delta with previous: 32
Buff: 0x1f38710 - Delta with previous: 32
…

Freed chunk: 0x1f386f0
New buff: 0x1f386f0

● Looks like there is a cache: next object is allocated in
the location of the last freed one. This makes sense to
take advantage of the CPU row cache.

52Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Heap spray technique consists of generating memory
allocations of convenient sizes to predict the layout, with a
reasonable certainty

● It’s not a vulnerability itself, but some allocators try to detect
sprays, randomize allocations or separate them in different
heaps to make exploitation more difficult (heap isolation)

● There isn’t a universal technique: has to be adjusted to each
dynamic allocator and heap

● It’s not a 100% reliable technique
● In 32 bit platforms a memory exhaustion can be generated

because virtual addresses range is comparable to physical
addresses range. In 64 bits is not possible

53Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Example:
– Objects of a fixed size are allocated all over the heap

– 1 or more objects in the middle of the heap are freed

– The allocation of the object vulnerable to use-after-free is
generated. This object is then freed. The exact location is
not known

– Objects are conveniently freed

– New objects of a convenient size are allocated such that
there is an overlap with the freed object (vulnerable to
use-after-free)

– We never know exact locations: everything is based on a
relative overlap (offsets)

54Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

55Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

56Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● How to generate allocations?
– That depends on the target process. In example, in a

browser creating arrays from JavaScript will cause the
creation of arrays in the native heap

– Arrays and strings are interesting for the attacker
because of the number of bytes directly controlled in the
heap. For this reason, separate heaps are commonly
used for them. Other objects may allow to control a
smaller number of bytes but may be interesting too

– It’s possible to play with different sizes for the
allocations to be managed by different dynamic
allocators, and minimize garbage space between them

57Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

Image from corelan.be

58Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

Image from corelan.be

59Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● Memory safety & Type confusion
– Managed environments (I.e. VMs such as Java,

.NET, etc.) ensure that object fields read/write
operations obey the correct type, offset and limits

● I.e. in the object 0x0 offset there is an int, 4 bytes long.
It’s not in the offset 0x1 and it’s not 8 bytes long.

– Read/write operations out of data type boundaries
are not allowed, and usage has to be according to
the data type (i.e. an int cannot be dereferenced as
if it were a pointer to an object)

60Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● No code (interpreted bytecode or JITted code)
can write a String in “a.intVar1”, or any value in
“a.intVar2”

● Bytecode is verified before being interpreted or
compiled

class A {
 public int intVar1;
}

class B {
 public int intVar1;
 public int intVar2;
}

private static A a = new A();

private static B b = new B();

Java

61Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

private static void jitIt() {
 a.intVar1 = b.intVar1 % 1;
 b.intVar1 = b.intVar2 % 2;
 b.intVar2 = a.intVar1 % 3;
}

7fffd8d1f49c: mov 0xc(%rdi),%eax
7fffd8d1f49f: mov $0x1,%ebx
7fffd8d1f4a4: cmp $0x80000000,%eax
7fffd8d1f4aa: jne 0x7fffd8d1f4bb
7fffd8d1f4b0: xor %edx,%edx
7fffd8d1f4b2: cmp $0xffffffff,%ebx
7fffd8d1f4b5: je 0x7fffd8d1f4be
7fffd8d1f4bb: cltd
7fffd8d1f4bc: idiv %ebx
7fffd8d1f4be: mov %edx,0xc(%rsi)

RSI =
pointer to
“a”

RDI =
pointer to
“b”

62Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
7fffd8d1f4c1: mov 0x10(%rdi),%eax
7fffd8d1f4c4: mov $0x2,%ebx
7fffd8d1f4c9: cmp $0x80000000,%eax
7fffd8d1f4cf: jne 0x7fffd8d1f4e0
7fffd8d1f4d5: xor %edx,%edx
7fffd8d1f4d7: cmp $0xffffffff,%ebx
7fffd8d1f4da: je 0x7fffd8d1f4e3
7fffd8d1f4e0: cltd
7fffd8d1f4e1: idiv %ebx
7fffd8d1f4e3: mov %edx,0xc(%rdi)

 b.intVar1 = b.intVar2 % 2;

RSI = pointer to “a”

RDI = pointer to “b”

7fffd8d1f4e6: mov 0xc(%rsi),%eax
7fffd8d1f4e9: mov $0x3,%esi
7fffd8d1f4ee: cmp $0x80000000,%eax
7fffd8d1f4f4: jne 0x7fffd8d1f505
7fffd8d1f4fa: xor %edx,%edx
7fffd8d1f4fc: cmp $0xffffffff,%esi
7fffd8d1f4ff: je 0x7fffd8d1f508
7fffd8d1f505: cltd
7fffd8d1f506: idiv %esi
7fffd8d1f508: mov %edx,0x10(%rdi)

b.intVar2 = a.intVar1 % 3;

63Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● If the VM is tricked to set a pointer to “a” in RDI,
there would be a read/write operation out of the
A data type boundaries. Memory from a
contiguous heap object could be overwritten

● Let’s assume that A data type has a reference
to B in its first field, over which read/write
operations are performed

64Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free
class A {
 public B refToB;
}

class B {
 public int intVar1;
 public int intVar2;
}

private static A a = new A();

private static B b = new B();

private static void jitIt() {
 a.refToB.intVar1 = a.refToB.intVar1 % 1;
 b.intVar1 = b.intVar2 % 2;
}

Java

65Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

7fffd8d221a7: mov 0xc(%rax),%edi
7fffd8d221aa: push %r10
7fffd8d221ac: cmp 0x1e420dfd(%rip),%r12
7fffd8d221b3: je 0x7fffd8d22230

...

7fffd8d22236: mov 0xc(%rdi),%eax
7fffd8d22239: mov $0x1,%ebx
7fffd8d2223e: cmp $0x80000000,%eax
7fffd8d22244: jne 0x7fffd8d22255
7fffd8d2224a: xor %edx,%edx
7fffd8d2224c: cmp $0xffffffff,%ebx
7fffd8d2224f: je 0x7fffd8d22258
7fffd8d22255: cltd
7fffd8d22256: idiv %ebx
7fffd8d22258: mov %edx,0xc(%rdi)

RAX = pointer to
“a”
EDI = a.refToB
(compressed
pointer to “b”)

RDI = a.refToB
(uncompressed
pointer to “b”)

66Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Use After Free

● If we manage to set a b’ object of B data type in
freed memory where an A object was located
(keeping the “a” reference), we have control
over each read/write operation:
– b’.intVar1 = set the memory address
– a.refToB.intVar1 = set the value

67Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab

Lab 9.1: Use After Free exploitation in stack (user
space)

68Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

Lab

Lab 9.2: Exploitation with Heap Spray

Set EIP to address 0x41414141

69Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse | v1.0 EN | CC BY-SA

References

● https://www.corelan.be/index.php/2011/12/31/e
xploit-writing-tutorial-part-11-heap-spraying-
demystified/

● https://msdn.microsoft.com/en-
us/library/ms810603.aspx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

