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Use After Free
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Use After Free

Polymorphism and virtual methods
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class A {
public:

void m1();
virtual void m2();

};

class B : public A {
public:

void m1();
void m2();

};

A* a = new A();
A* a2 = new B();
A a3;
B* b = new B();
B* b2 = new A();
B b3;

a->m1();
b->m1();

a->m2();
b->m2();

a2->m1();
a2->m2();

a3.m1();
b3.m1();

a3.m2();
b3.m2();

Which method is 
executed?
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class A {
public:

void m1();
virtual void m2();

};

class B : public A {
public:

void m1();
void m2();

};

A* a = new A();
A* a2 = new B();
A a3;
B* b = new B();
B* b2 = new A();
B b3;

a->m1(); // A::m1
b->m1(); // B::m1

a->m2(); // A::m2
b->m2(); // B::m2

a2->m1(); // A::m1
a2->m2(); // B::m2

a3.m1(); // A::m1
b3.m1(); // B::m1

a3.m2(); // A::m2
b3.m2(); // B::m2

Which method is 
executed?
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Use After Free

●  Virtual methods
● What to execute is decided in run time

A* a;
if (rand() % 2) {

a = new A();
} else {

a = new B();
}
a->m();

class A {
public:

virtual void m();
};

class B : public A {
public:

void m();
};



6Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Use After Free

● Virtual methods
● There isn’t a single possible target to generate a direct 

CALL in compile time
● Indirect CALL: depends on run time data

● Have a performance cost
– In C++ a method is not virtual unless declared as such

– In Java methods are virtual by default. However, optimizations 
are made to avoid performance penalty when not needed

● Non-virtual methods
● Target is known in compile time and is unique
● Better performance
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Use After Free
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Use After Free

● Virtual methods table (vtable)
– If a class has virtual methods, there is a pointer in 

the object to a table with pointers to virtual methods
● If there are no virtual methods, this pointer does not exist 

and memory is saved (the object looks like a C struct)

– When a class inherits from other classes, vtable 
includes vtables from parent classes 
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Use After Free
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Use After Free

Call site for a virtual method
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Use After Free

● %rax = *(%rbp – 0x28)
● Read the pointer to the object from a local 

variable and store the value in %rax register
– I.e: variable “a”

● Object can be of A or B type, depending o 
what has been assigned to “a” variable in run 
time

● %rax = *(%rax)
● %rax now points to A or B class vtable
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Use After Free

● %rax = *(%rax)
● %rax now points to “m” method (located in 

position 0 of the vtable) 
● “m” method is in the same position 0 of A and 

B class vtables
● Code dereferences “m” method without 

knowing from which vtable will be obtained 
in run time. All it’s known is that the 
method is in vtable’s first entry
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Use After Free

● %rdx = *(%rbp – 0x28)
● %rdi = %rdx

● In %rdi goes the first parameter for the called 
function (x86_64 SystemV ABI)

● This first parameter is a pointer to the object 
(“this” in C++)

● CALL *%rax
● Indirect call to “m” method. “m” address was 

previously loaded in %rax register
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Use After Free

● The interesting thing, from the exploitation point 
of view, is the mix between data and code: 
there are pointers to code in data areas
– The object (and, thus, the pointer to the vtable) may 

be located in the stack, heap or .data sections

– vtables are in .rodata section

– Vtable entries point to methods located in .text 
section
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Use After Free

Class A vtable

Class B vtable
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Use After Free

Is there polymorphism in C?
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Use After Free

typedef struct _super_t {
        void(*m)(void); // virtual method
} super_t;

((super_t*)a)->m = mA;

(*(a->m))();
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Demo 9.1

Example of polymorphism in C
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Use After Free

class A {
public:

virtual void m();
};

int main() {
A* a = new A();
...
delete a;
...
a->m();
return 0;

}

What is the problem?
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Use After Free
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Use After Free



22Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Use After Free

class A {
public:

virtual void m();
};

A* f(void){
A a;
...
return &a;

}

int main() {
A* a = f();
...
a->m();
return 0;

}

What is the problem?
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Use After Free
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Use After Free
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Use After Free

A* a_global;

void callback(A* a){
a_global = a;
return;

}

What is the problem?

void f(void) {
if (a_global != NULL) 
{

a_global->m();
}
return;

}



26Reverse Engineering | Class 9 | Martin Balao | martin.uy/reverse  | v1.0 EN | CC BY-SA

Use After Free

● Looks like a trivial problem but it’s not: in complex 
systems there may be references (pointers) to an 
object from different places and can be even modified 
concurrently
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Use After Free

● If an object is deleted, what should be done 
with references? While deleting references, 
what would happen if a different thread uses a 
reference concurrently?
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Use After Free

● What is the object life cycle and how to manage 
it?

● Temporary objects
● Stored in the stack
● Do not save references in global variables
● Do not send references up in the stack
● It’s safe to send references down in the stack
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Use After Free

● Pointers in C++11 / boost:
● std::unique_ptr
● std::shared_ptr
● std::weak_ptr

● RAII pattern: Resource Acquisition is 
Initialization
● Memory is just another resource
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Use After Free

● std::unique_ptr
● std::make_unique<A>(...);
● There is no copy constructor, only move 

constructor
● 1 object 1 pointer relationship
● No synchronization cost
● Small memory footprint: size of a raw pointer
● Raw pointer can be accessed and “→” 

operator used
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Use After Free

● GNU ISO C++ (unique_ptr.h)

/** Takes ownership of a pointer.
       ...
       */
      explicit
      unique_ptr(pointer __p) noexcept
      : _M_t()
      {

std::get<0>(_M_t) = __p;
static_assert(!is_pointer<deleter_type>::value,

     "constructed with null function pointer deleter");
      }
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Use After Free

● GNU ISO C++ (unique_ptr.h)

/// Move constructor.
      unique_ptr(unique_ptr&& __u) noexcept
      : _M_t(__u.release(), 
std::forward<deleter_type>(__u.get_deleter())) { }
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Use After Free

● GNU ISO C++ (unique_ptr.h)
      /// Dereference the stored pointer.
      typename add_lvalue_reference<element_type>::type
      operator*() const
      {

__glibcxx_assert(get() != pointer());
return *get();

      }

      /// Return the stored pointer.
      pointer
      operator->() const noexcept
      {

_GLIBCXX_DEBUG_PEDASSERT(get() != pointer());
return get();

      }
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Use After Free

● GNU ISO C++ (unique_ptr.h)

/// Destructor, invokes the deleter if the stored pointer is 
not null.
      ~unique_ptr() noexcept
      {

auto& __ptr = std::get<0>(_M_t);
if (__ptr != nullptr)
  get_deleter()(__ptr);
__ptr = pointer();

      }
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Use After Free

● std::shared_ptr
● std::make_shared<A>(...);
● There is copy constructor
● 1 object, 1 or more pointers relationship
● Synchronization cost is paid. Object is 

destroyed when the last reference is lost
● Memory footprint: (raw pointer size)*2
● Raw pointer can be accessed and “→” 

operator used
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Use After Free

● GNU ISO C++ (shared_ptr.h)

  template<typename _Tp, _Lock_policy _Lp>
    class __shared_ptr
  {

... 
_Tp*       _M_ptr;         // Contained pointer.

      __shared_count<_Lp>  _M_refcount;    // Reference 
counter.
     };
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Use After Free

● GNU ISO C++ (shared_ptr.h)

template<typename _Tp1>
        __shared_ptr(const __shared_ptr<_Tp1, 
_Lp>& __r)

: _M_ptr(__r._M_ptr), 
_M_refcount(__r._M_refcount) // never throws
        
{ __glibcxx_function_requires(_ConvertibleCon
cept<_Tp1*, _Tp*>) }

Copy constructor
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Use After Free

● std::weak_ptr
● Created in relationship to a shared_ptr
● Does not count toward object’s destruction
● weak ptr can only be used to obtain a 

shared_ptr (if the object was not destroyed)
– While object is in use, a shared ptr that prevents 

deletion exists
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Use After Free

● Good practice: assign NULL value to variables 
that held an object pointer after freeing it

● Languages like Java, .NET, Python, etc. do not 
allow to manage memory manually *
● * with the exception of specific APIs (I.e. 

Unsafe in Java)
● Polymorphism is implemented with vtables too
● Not vulnerable to Use After Free unless there 

is a bug in the VM
– Performance and memory footprint costs are paid
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Demo 9.2

Stack Use After Free exploitation (kernel space)
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Use After Free

● Exploiting Use After Free in heap has additional challenges: 
how to overwrite freed space? How to predict memory location 
where “fake vtable” would be located?

● Heap is a memory area where process can store variable (and 
unknown) length data, in run time. I.e. arrays, streams, objects, 
etc.

● Processes generally use dynamic memory allocators in user 
space (provided by the operating system) to manage the Heap:
– Simplification or abstraction (reserved vs. committed memory)

– Granularity (allocate a few bytes only)

– Contiguous memory at virtual addressing level (not necessarily at 
physical addressing level)

– Anti-fragmentation and memory management (caches)
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Use After Free

● Every process has at least 1 heap
● Windows has multiple APIs to manage memory and 

supports multiple heaps:
– HeapCreate / HeapDelete

– HeapAlloc / HeapFree

– VirtualAlloc / VirtualFree

– malloc (MSVCRT)

● In Linux
– mmap is used to allocate memory segments

– brk / sbrk are used increase or reduce the heap size

– malloc (glibc)
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Use After Free

● brk syscall (Linux)
– Defined in mm/mmap.c (kernel)

– Changes “data segment” size (heap)
● This means mapping or unmapping physical memory

– Heap grows towards higher virtual memory 
addresses (stack towards lower virtual memory 
addresses)
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Use After Free

● brk syscall (Linux)

struct mm_struct {
...
unsigned long start_brk, brk, start_stack;
...

}
include/linux/mm_types.h (Linux kernel)

mm_struct structure describes a process memory, at kernel level. 
In particular, start_brk and brk show the heap location.
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Use After Free
int main(void) {

char* buff = (char*)malloc(1);
if (buff != NULL) {

free(buff);
buff = NULL;

}
    return 0;
}

When calling “malloc” for the first time, glibc has to initialize and 
extend the process heap. Brk syscall will be used for that.

Process map before calling malloc:
...
00601000-00602000 … main
7ffff7a24000-7ffff7bce000 … libc.so.6
... 
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Use After Free
In this example case, glibc executes brk syscall with value 
0x623000.

When entering sys_brk (kernel):
(gdb) print/x ((struct mm_struct*)(current->mm))->start_brk 
$18 = 0x602000
(gdb) print/x ((struct mm_struct*)(current->mm))->brk      
$19 = 0x602000

Process heap has size 0 at this moment.

When finalizing sys_brk:

(gdb) print/x ((struct mm_struct*)(current->mm))->start_brk 
$18 = 0x602000
(gdb) print/x ((struct mm_struct*)(current->mm))->brk      
$19 = 0x623000
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Use After Free
Process map when returning from sys_brk syscall:

...
00601000-00602000 rw-p … main
00602000-00623000 rw-p ...  [heap]
7ffff7a24000-7ffff7bce000 r-xp … libc.so.6
…

malloc finally returned address 0x602260, within heap segment.
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Use After Free
int main(void) {
    unsigned int iter_count = 10U;
    char* previous_buff = NULL;

    while (iter_count-- > 0U) {
    char* buff = (char*)malloc(1U);

        printf("Buff: %p - Delta with previous: %lu\n", buff, 
(unsigned long)(buff - previous_buff));
        previous_buff = buff;

}
    return 0;
}
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Use After Free
Buff: 0x1ca4260 - Delta with previous: 30032480
Buff: 0x1ca4690 - Delta with previous: 1072
Buff: 0x1ca46b0 - Delta with previous: 32
Buff: 0x1ca46d0 - Delta with previous: 32
Buff: 0x1ca46f0 - Delta with previous: 32
…

Buff: 0x9b8260 - Delta with previous: 10191456
Buff: 0x9b8690 - Delta with previous: 1072
Buff: 0x9b86b0 - Delta with previous: 32
Buff: 0x9b86d0 - Delta with previous: 32
Buff: 0x9b86f0 - Delta with previous: 32
...
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Use After Free
Memory addresses when memory chunks are 
allocated are not completely random. From the previous 
traces it’s possible to assume: 
● Allocator tries not to fragment the memory (contiguous 

allocations)
● Minimum size between 2 chunks (including metadata) 

is 32 bytes
● Even though addresses are different, endings are 

equal due to alignment

If a chunk in the middle of this sequence is freed and a 
new allocation of the same size happens, what’s the 
most likely address for the new chunk?
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Use After Free
Buff: 0x1f38260 - Delta with previous: 32735840
Buff: 0x1f38690 - Delta with previous: 1072
Buff: 0x1f386b0 - Delta with previous: 32
Buff: 0x1f386d0 - Delta with previous: 32
Buff: 0x1f386f0 - Delta with previous: 32
Buff: 0x1f38710 - Delta with previous: 32
…

Freed chunk: 0x1f386f0
New buff: 0x1f386f0

● Looks like there is a cache: next object is allocated in 
the location of the last freed one. This makes sense to 
take advantage of the CPU row cache.
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Use After Free

● Heap spray technique consists of generating memory 
allocations of convenient sizes to predict the layout, with a 
reasonable certainty

● It’s not a vulnerability itself, but some allocators try to detect 
sprays, randomize allocations or separate them in different 
heaps to make exploitation more difficult (heap isolation)

● There isn’t a universal technique: has to be adjusted to each 
dynamic allocator and heap

● It’s not a 100% reliable technique
● In 32 bit platforms a memory exhaustion can be generated 

because virtual addresses range is comparable to physical 
addresses range. In 64 bits is not possible
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Use After Free

●  Example:
– Objects of a fixed size are allocated all over the heap

– 1 or more objects in the middle of the heap are freed

– The allocation of the object vulnerable to use-after-free is 
generated. This object is then freed. The exact location is 
not known

– Objects are conveniently freed

– New objects of a convenient size are allocated such that 
there is an overlap with the freed object (vulnerable to 
use-after-free)

– We never know exact locations: everything is based on a 
relative overlap (offsets)
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Use After Free
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Use After Free
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Use After Free

●  How to generate allocations?
– That depends on the target process. In example, in a 

browser creating arrays from JavaScript will cause the 
creation of arrays in the native heap

– Arrays and strings are interesting for the attacker 
because of the number of bytes directly controlled in the 
heap. For this reason, separate heaps are commonly 
used for them. Other objects may allow to control a 
smaller number of bytes but may be interesting too

– It’s possible to play with different sizes for the 
allocations to be managed by different dynamic 
allocators, and minimize garbage space between them
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Use After Free

Image from corelan.be
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Use After Free

Image from corelan.be
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Use After Free

●  Memory safety & Type confusion
– Managed environments (I.e. VMs such as Java, 

.NET, etc.) ensure that object fields read/write 
operations obey the correct type, offset and limits

● I.e. in the object 0x0 offset there is an int, 4 bytes long. 
It’s not in the offset 0x1 and it’s not 8 bytes long.

– Read/write operations out of data type boundaries 
are not allowed, and usage has to be according to 
the data type (i.e. an int cannot be dereferenced as 
if it were a pointer to an object)
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Use After Free

● No code (interpreted bytecode or JITted code) 
can write a String in “a.intVar1”, or any value in 
“a.intVar2”

● Bytecode is verified before being interpreted or 
compiled

class A {
    public int intVar1;
}

class B {
    public int intVar1;
    public int intVar2;
}

private static A a = new A();

private static B b = new B();

Java
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Use After Free

private static void jitIt() {
    a.intVar1 = b.intVar1 % 1;
    b.intVar1 = b.intVar2 % 2;
    b.intVar2 = a.intVar1 % 3;
}

7fffd8d1f49c: mov    0xc(%rdi),%eax
7fffd8d1f49f: mov    $0x1,%ebx
7fffd8d1f4a4: cmp    $0x80000000,%eax
7fffd8d1f4aa: jne      0x7fffd8d1f4bb
7fffd8d1f4b0: xor      %edx,%edx
7fffd8d1f4b2: cmp    $0xffffffff,%ebx
7fffd8d1f4b5: je        0x7fffd8d1f4be
7fffd8d1f4bb: cltd   
7fffd8d1f4bc: idiv     %ebx
7fffd8d1f4be: mov    %edx,0xc(%rsi)

RSI = 
pointer to 
“a”

RDI = 
pointer to 
“b”
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Use After Free
7fffd8d1f4c1: mov  0x10(%rdi),%eax
7fffd8d1f4c4: mov  $0x2,%ebx
7fffd8d1f4c9: cmp  $0x80000000,%eax
7fffd8d1f4cf: jne    0x7fffd8d1f4e0
7fffd8d1f4d5: xor    %edx,%edx
7fffd8d1f4d7: cmp  $0xffffffff,%ebx
7fffd8d1f4da: je      0x7fffd8d1f4e3
7fffd8d1f4e0: cltd   
7fffd8d1f4e1: idiv   %ebx
7fffd8d1f4e3: mov  %edx,0xc(%rdi)

    b.intVar1 = b.intVar2 % 2;

RSI = pointer to “a”

RDI = pointer to “b”

7fffd8d1f4e6: mov  0xc(%rsi),%eax
7fffd8d1f4e9: mov  $0x3,%esi
7fffd8d1f4ee: cmp  $0x80000000,%eax
7fffd8d1f4f4: jne    0x7fffd8d1f505
7fffd8d1f4fa: xor    %edx,%edx
7fffd8d1f4fc: cmp  $0xffffffff,%esi
7fffd8d1f4ff: je      0x7fffd8d1f508
7fffd8d1f505: cltd   
7fffd8d1f506: idiv   %esi
7fffd8d1f508: mov  %edx,0x10(%rdi)

b.intVar2 = a.intVar1 % 3;
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Use After Free

● If the VM is tricked to set a pointer to “a” in RDI, 
there would be a read/write operation out of the 
A data type boundaries. Memory from a 
contiguous heap object could be overwritten

● Let’s assume that A data type has a reference 
to B in its first field, over which read/write 
operations are performed
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Use After Free
class A {
    public B refToB;
}

class B {
    public int intVar1;
    public int intVar2;
}

private static A a = new A();

private static B b = new B();

private static void jitIt() {
    a.refToB.intVar1 = a.refToB.intVar1 % 1;
    b.intVar1 = b.intVar2 % 2;
}

Java
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Use After Free

7fffd8d221a7: mov    0xc(%rax),%edi
7fffd8d221aa: push   %r10
7fffd8d221ac: cmp    0x1e420dfd(%rip),%r12
7fffd8d221b3: je         0x7fffd8d22230

...

7fffd8d22236: mov    0xc(%rdi),%eax
7fffd8d22239: mov    $0x1,%ebx
7fffd8d2223e: cmp    $0x80000000,%eax
7fffd8d22244: jne      0x7fffd8d22255
7fffd8d2224a: xor      %edx,%edx
7fffd8d2224c: cmp    $0xffffffff,%ebx
7fffd8d2224f: je         0x7fffd8d22258
7fffd8d22255: cltd   
7fffd8d22256: idiv     %ebx
7fffd8d22258: mov    %edx,0xc(%rdi)

RAX = pointer to 
“a”
EDI = a.refToB 
(compressed 
pointer to “b”)

RDI = a.refToB 
(uncompressed 
pointer to “b”)
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Use After Free

● If we manage to set a b’ object of B data type in 
freed memory where an A object was located 
(keeping the “a” reference), we have control 
over each read/write operation:
– b’.intVar1 = set the memory address
– a.refToB.intVar1 = set the value
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Lab

Lab 9.1: Use After Free exploitation in stack (user 
space)
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Lab

Lab 9.2: Exploitation with Heap Spray

Set EIP to address 0x41414141
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● https://www.corelan.be/index.php/2011/12/31/e
xploit-writing-tutorial-part-11-heap-spraying-
demystified/

● https://msdn.microsoft.com/en-
us/library/ms810603.aspx
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