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Agenda

● Goals
● How do open source projects work?
● Introduction to RPMs
● Building RPMs
● A quick example: building, deploying and 

debugging the Linux kernel
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Disclaimer

● I’m not an RPM nor a packaging expert, just a 
developer

● This is not a comprehensive RPM talk but more 
of a straight forward recipe

● This talk is based on Fedora Linux
– It may be different in other distributions and 

package formats, but hopefully you will find some 
commonality
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Goals

● Setup a quick development and debugging 
environment for any open source project (Linux 
kernel, NSS, Java, etc.)
– Incremental builds

– Debug with symbols and source code

– Support building multiple projects in the same environment

● Only one recipe to rule them all: hide project specifics 
when building and installing

● Don’t taint our current environment with build 
dependencies
– And don’t mix packages from different versions!
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Open Source projects

● There is a community (upstream)
– Generally sponsored by a company or a foundation

– Governed by its authorities, structures and rules

– There is usually a code repository, bug systems, 
mailing lists and IRC

● Source code is always available but not every 
community provide binary builds (for every 
architecture and operating system)

● Communities are open but some require signing 
agreements to accept major contributions
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Open Source projects



7RPMs for Devs | Martin Balao (martin.uy)  | v1.1 EN | CC BY-SA

Open Source projects

● There are Linux distributions (downstream)
– Sponsor engineers to contribute to upstream communities

– Take source code from upstream community repositories 
(vanilla source) and make a few changes to build, 
package and distribute

– Why a “few changes”?
● Integrate to their environment (i.e.: files or directories layout, 

crypto certificates location, configuration and admin tools, etc.)
● Apply enhancements not in upstream yet (or that upstream has 

rejected for some reason)
● Remove code due to license issues or platform-specific
● Change build parameters
● Other
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Open Source projects

● Red Hat has a policy of “upstream first”, with 
some exceptions:
– Service Level Agreements (SLAs) may require to 

deliver faster than what it takes for upstream to 
accept a contribution

● These exceptions are still open source: you can 
get them from the RPM source code repository 
which is publicly available

● Exceptions tend to be minimal (maintenance 
cost) and generally don’t modify APIs (it’s not a 
fork)
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Open Source projects

● To contribute code to an open source project, you need 
to generate patches against master branch

● Building is different for each project:
– dependencies?

– ./configure? parameters?

– make? cmake? 
● all?
● build?
● install?

– README?

● You really need to read documentation for developers 
(or ask) and setup a proper environment.
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Introduction to RPMs

● Binary format for source code and binaries 
packaging

● Created by Erik Troan and Marc Ewing (Red Hat), 
in 1997

● Used in many Linux distributions (and a few non-
Linux ones)

● For multiple architectures
● Dependencies evaluation (to build or install)
● Delta RPMs (to speed up upgrades)
● Signature for integrity checks
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Introduction to RPMs

● Linux distributions generally provide RPMs packages to 
download (from a package manager or HTTP)
– Source packages (.src.rpm)

– Binary packages (for each supported architecture)

– Devel packages (headers)

– Debug info packages (debug symbols stripped from built binaries 
and source code)

Availability of these classes of packages depends on each case. 
I.e.:  A “devel” package may not make sense for interpreted code. 

● In addition, Fedora provides public read-access to its RPMs 
GIT repository
– This repository is where RPM changes occur (package 

maintainers)



12RPMs for Devs | Martin Balao (martin.uy)  | v1.1 EN | CC BY-SA

Introduction to RPMs

● RPMs download
– http://mirror.globo.com/fedora/linux/development/ra

whide/Everything/

● Git
– https://src.fedoraproject.org/rpms/<package-

name>.git

● fedpkg (Fedora) is a useful tool to work with 
RPMs and their repositories
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Introduction to RPMs

● What does an SRPM package contain?
– Source tarballs (vanilla sources) and “source” index 

file for integrity checking

– RPM patches

– SPEC file
● Recipe (makefile-like) to build an RPM from an unpacked 

SRPM

– Package dependent and auxiliary scripts
● I.e.: script to build the source tarball from upstream 

repository
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Introduction to RPMs

● SPEC file
– Package information (multiple RPM packages may 

be generated)
● Name
● Description
● License
● Architectures
● Version

– Package dependencies

– RPM patches (source code diffs)
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Introduction to RPMs

● SPEC file
– Stage instructions

● %prep → extract source tarballs and apply RPM patches
● %build → build patched source
● %install → deploy to a BUILDROOT (final directories and 

files layout)
● %clean → do cleanup
● %post → do post-processing
● %check → run smoke tests on built binaries

– Changelog
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Building RPMs

● fedpkg tool
– fedpkg clone -a <package-name>

– fedpkg switch-branch <your-branch>

– fedpkg sources

– fedpkg srpm

● Choose a branch equal to your deploy target (i.e. 
f25 for Fedora 25). This will simplify dependencies.

● At this point, package RPM source has been 
obtained and an SRPM (with vanilla sources inside) 
has been built from it.
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Building RPMs

● Mock
– Tool for building packages in a chroot environment

– Safely and automatically manages build 
dependencies

– Internally uses “dnf/yum” to get dependencies and 
“rpmbuild” tools to work with RPM packages.

– Available in Fedora and CentOS. Can be built for 
RHEL.

– Build for multiple distros and arches. I.e.: 
environment configuration to build for “Fedora 25 
x86_64”.
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Building RPMs

● Initialize a mock environment
– sudo /usr/sbin/usermod -a -G mock $
(whoami)

– mock -r fedora-25-x86_64 --rootdir=<path-
to-chroot> --init

● Install build dependencies in a mock environment
– mock -r fedora-25-x86_64 --rootdir=<path-
to-chroot> --installdeps <path-to-srpm>

● Mock can be used to build (mock build) but we 
will do it manually to get more control.
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Building RPMs

● Prepare to build the package
– cd <path-to-chroot>/builddir

– mkdir <package-name>_build

– cd <package-name>_build

– mkdir original

– cp <path-to-srpm> original

– mock -r fedora-25-x86_64 
--rootdir=<path-to-chroot> --shell
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Building RPMs

● Prepare to build the package
– mock -r fedora-25-x86_64 --rootdir=<path-to-chroot> 
--shell

● export CURRENT_BUILD_PACKAGE=<package-name>
● rpm --define "_topdir /builddir/$
{CURRENT_BUILD_PACKAGE}_build" -i /builddir/$
{CURRENT_BUILD_PACKAGE}_build/original/<package-srpm-
file>

● At this point, the SRPM is unpacked in the build environment.
● Save original SPEC file

– cp <path-to-chroot>/builddir/<package-
name>_build/SPECS/<package-name>.spec <path-to-
chroot>/builddir/<package-
name>_build/SPECS/<package-name>.spec.bak
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Building RPMs

● To increase speed, any build directory 
(/builddir/$
{CURRENT_BUILD_PACKAGE}_build/BUILDR
OOT or BUILD) can be replaced by a directory 
on tmpfs through symbolic linking.
– Instead of slow HDD I/O, everything is written in 

memory

– Requires large memory space available

● However, persisting build artifacts in BUILD 
directory may be interesting for incremental 
builds.
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Building RPMs

● Prepare to build the package
– mock -r fedora-25-x86_64 --rootdir=<path-
to-chroot> --shell

● export CURRENT_BUILD_PACKAGE=<package-name>
● rpmbuild --define "_topdir /builddir/$
{CURRENT_BUILD_PACKAGE}_build" -bp 
--target=`uname -m` /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}.spec 2> /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}_build_err.log | 
tee /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}_build_out.log
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Building RPMs

● Prepare to build the package
– At this point, prepare stage (%prep) has been 

executed. Vanilla source has been unpackaged and 
RPMs patches applied on top of it. This is the code 
that is going to be built.

– Edit SPEC file:
● Add “exit 0” after “%prep” line
● Find any instruction that removes or cleanups files and 

comment it. I.e.: “make -s mrproper” in kernel.spec
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Building RPMs

● Track source changes (optional)
– cd <path-to-chroot>/builddir/<package-
name>_build/BUILD/<package-name>

– rm -rf .git

– git init

– git add .

– git commit -m 'dev_baseline_source'

– git tag -a dev_baseline_source -m 
"dev_baseline_source"
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Building RPMs

● Build
– mock -r fedora-25-x86_64 --rootdir=<path-to-
chroot> --shell

● export CURRENT_BUILD_PACKAGE=<package-name>
● rpmbuild --define "_topdir /builddir/$
{CURRENT_BUILD_PACKAGE}_build" -bb --target=`uname 
-m` /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}.spec 2> /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}_build_err.log | tee 
/builddir/${CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}_build_out.log

– RPMs will be written to <path-to-chroot>/builddir/<package-
name>_build/RPMS
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Building RPMs

● Incremental builds
– Modify source code and re-run build command.

– Objects that were not affected by file changes, are 
not re-built speeding up the whole process.
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A quick example: kernel

● Before executing “prep” stage, modify kernel.spec file:
– %define buildid .dev (no blank space before nor after “%”)

– Disable signing (for x86_64)
● %global signkernel 0
● %global signmodules 0

– In %build:
● Comment “make -s mrproper” prepending a “#”

● Add the following options to “prep” and “build” 
rpmbuild commands:
– --without debuginfo --without debug --without perf --without 

cross_headers --without headers --without doc --without 
tools
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A quick example: kernel

● Before executing “build” rpmbuild command, modify 
<path-to-
chroot>/builddir/kernel_build/BUILD/<kernel>/<kernel-
2>/configs/<kernel> (i.e.: kernel-4.9.14-x86_64.config) 
– Change:

● CONFIG_RANDOMIZE_BASE=n
● CONFIG_RANDOMIZE_MEMORY=n
● CONFIG_MODULE_SIG=n
● CONFIG_MODULE_SIG_ALL=n
● CONFIG_MODULE_SIG_UEFI=n
● CONFIG_MODULE_SIG_SHA256=n
● CONFIG_KEXEC_BZIMAGE_VERIFY_SIG=n
● CONFIG_KEXEC_VERIFY_SIG=n
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A quick example: kernel

● Extras
– Eclipse is a good IDE for kernel dev + debugging 

(as a gdbserver front-end) in my experience
● Source debugging is a bit tricky though, due to compiler 

optimization

– QEMU is a good hypervisor for kernel debugging. It 
has a gdbserver stub. Had a few issues debugging 
boot stage.

● Run QEMU image with “-s” parameter and attach gdb to 
port 1234.
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References

● https://github.com/rpm-software-
management/mock/wiki
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