
1RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

RPMs for Devs

2RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Agenda

● Goals
● How do open source projects work?
● Introduction to RPMs
● Building RPMs
● A quick example: building, deploying and

debugging the Linux kernel

3RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Disclaimer

● I’m not an RPM nor a packaging expert, just a
developer

● This is not a comprehensive RPM talk but more
of a straight forward recipe

● This talk is based on Fedora Linux
– It may be different in other distributions and

package formats, but hopefully you will find some
commonality

4RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Goals

● Setup a quick development and debugging
environment for any open source project (Linux
kernel, NSS, Java, etc.)
– Incremental builds

– Debug with symbols and source code

– Support building multiple projects in the same environment

● Only one recipe to rule them all: hide project specifics
when building and installing

● Don’t taint our current environment with build
dependencies
– And don’t mix packages from different versions!

5RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Open Source projects

● There is a community (upstream)
– Generally sponsored by a company or a foundation

– Governed by its authorities, structures and rules

– There is usually a code repository, bug systems,
mailing lists and IRC

● Source code is always available but not every
community provide binary builds (for every
architecture and operating system)

● Communities are open but some require signing
agreements to accept major contributions

6RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Open Source projects

7RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Open Source projects

● There are Linux distributions (downstream)
– Sponsor engineers to contribute to upstream communities

– Take source code from upstream community repositories
(vanilla source) and make a few changes to build,
package and distribute

– Why a “few changes”?
● Integrate to their environment (i.e.: files or directories layout,

crypto certificates location, configuration and admin tools, etc.)
● Apply enhancements not in upstream yet (or that upstream has

rejected for some reason)
● Remove code due to license issues or platform-specific
● Change build parameters
● Other

8RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Open Source projects

● Red Hat has a policy of “upstream first”, with
some exceptions:
– Service Level Agreements (SLAs) may require to

deliver faster than what it takes for upstream to
accept a contribution

● These exceptions are still open source: you can
get them from the RPM source code repository
which is publicly available

● Exceptions tend to be minimal (maintenance
cost) and generally don’t modify APIs (it’s not a
fork)

9RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Open Source projects

● To contribute code to an open source project, you need
to generate patches against master branch

● Building is different for each project:
– dependencies?

– ./configure? parameters?

– make? cmake?
● all?
● build?
● install?

– README?

● You really need to read documentation for developers
(or ask) and setup a proper environment.

10RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Introduction to RPMs

● Binary format for source code and binaries
packaging

● Created by Erik Troan and Marc Ewing (Red Hat),
in 1997

● Used in many Linux distributions (and a few non-
Linux ones)

● For multiple architectures
● Dependencies evaluation (to build or install)
● Delta RPMs (to speed up upgrades)
● Signature for integrity checks

11RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Introduction to RPMs

● Linux distributions generally provide RPMs packages to
download (from a package manager or HTTP)
– Source packages (.src.rpm)

– Binary packages (for each supported architecture)

– Devel packages (headers)

– Debug info packages (debug symbols stripped from built binaries
and source code)

Availability of these classes of packages depends on each case.
I.e.: A “devel” package may not make sense for interpreted code.

● In addition, Fedora provides public read-access to its RPMs
GIT repository
– This repository is where RPM changes occur (package

maintainers)

12RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Introduction to RPMs

● RPMs download
– http://mirror.globo.com/fedora/linux/development/ra

whide/Everything/

● Git
– https://src.fedoraproject.org/rpms/<package-

name>.git

● fedpkg (Fedora) is a useful tool to work with
RPMs and their repositories

13RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Introduction to RPMs

● What does an SRPM package contain?
– Source tarballs (vanilla sources) and “source” index

file for integrity checking

– RPM patches

– SPEC file
● Recipe (makefile-like) to build an RPM from an unpacked

SRPM

– Package dependent and auxiliary scripts
● I.e.: script to build the source tarball from upstream

repository

14RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Introduction to RPMs

● SPEC file
– Package information (multiple RPM packages may

be generated)
● Name
● Description
● License
● Architectures
● Version

– Package dependencies

– RPM patches (source code diffs)

15RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Introduction to RPMs

● SPEC file
– Stage instructions

● %prep → extract source tarballs and apply RPM patches
● %build → build patched source
● %install → deploy to a BUILDROOT (final directories and

files layout)
● %clean → do cleanup
● %post → do post-processing
● %check → run smoke tests on built binaries

– Changelog

16RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● fedpkg tool
– fedpkg clone -a <package-name>

– fedpkg switch-branch <your-branch>

– fedpkg sources

– fedpkg srpm

● Choose a branch equal to your deploy target (i.e.
f25 for Fedora 25). This will simplify dependencies.

● At this point, package RPM source has been
obtained and an SRPM (with vanilla sources inside)
has been built from it.

17RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Mock
– Tool for building packages in a chroot environment

– Safely and automatically manages build
dependencies

– Internally uses “dnf/yum” to get dependencies and
“rpmbuild” tools to work with RPM packages.

– Available in Fedora and CentOS. Can be built for
RHEL.

– Build for multiple distros and arches. I.e.:
environment configuration to build for “Fedora 25
x86_64”.

18RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Initialize a mock environment
– sudo /usr/sbin/usermod -a -G mock $
(whoami)

– mock -r fedora-25-x86_64 --rootdir=<path-
to-chroot> --init

● Install build dependencies in a mock environment
– mock -r fedora-25-x86_64 --rootdir=<path-
to-chroot> --installdeps <path-to-srpm>

● Mock can be used to build (mock build) but we
will do it manually to get more control.

19RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Prepare to build the package
– cd <path-to-chroot>/builddir

– mkdir <package-name>_build

– cd <package-name>_build

– mkdir original

– cp <path-to-srpm> original

– mock -r fedora-25-x86_64
--rootdir=<path-to-chroot> --shell

20RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Prepare to build the package
– mock -r fedora-25-x86_64 --rootdir=<path-to-chroot>
--shell

● export CURRENT_BUILD_PACKAGE=<package-name>
● rpm --define "_topdir /builddir/$
{CURRENT_BUILD_PACKAGE}_build" -i /builddir/$
{CURRENT_BUILD_PACKAGE}_build/original/<package-srpm-
file>

● At this point, the SRPM is unpacked in the build environment.
● Save original SPEC file

– cp <path-to-chroot>/builddir/<package-
name>_build/SPECS/<package-name>.spec <path-to-
chroot>/builddir/<package-
name>_build/SPECS/<package-name>.spec.bak

21RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● To increase speed, any build directory
(/builddir/$
{CURRENT_BUILD_PACKAGE}_build/BUILDR
OOT or BUILD) can be replaced by a directory
on tmpfs through symbolic linking.
– Instead of slow HDD I/O, everything is written in

memory

– Requires large memory space available

● However, persisting build artifacts in BUILD
directory may be interesting for incremental
builds.

22RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Prepare to build the package
– mock -r fedora-25-x86_64 --rootdir=<path-
to-chroot> --shell

● export CURRENT_BUILD_PACKAGE=<package-name>
● rpmbuild --define "_topdir /builddir/$
{CURRENT_BUILD_PACKAGE}_build" -bp
--target=`uname -m` /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}.spec 2> /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}_build_err.log |
tee /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}_build_out.log

23RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Prepare to build the package
– At this point, prepare stage (%prep) has been

executed. Vanilla source has been unpackaged and
RPMs patches applied on top of it. This is the code
that is going to be built.

– Edit SPEC file:
● Add “exit 0” after “%prep” line
● Find any instruction that removes or cleanups files and

comment it. I.e.: “make -s mrproper” in kernel.spec

24RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Track source changes (optional)
– cd <path-to-chroot>/builddir/<package-
name>_build/BUILD/<package-name>

– rm -rf .git

– git init

– git add .

– git commit -m 'dev_baseline_source'

– git tag -a dev_baseline_source -m
"dev_baseline_source"

25RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Build
– mock -r fedora-25-x86_64 --rootdir=<path-to-
chroot> --shell

● export CURRENT_BUILD_PACKAGE=<package-name>
● rpmbuild --define "_topdir /builddir/$
{CURRENT_BUILD_PACKAGE}_build" -bb --target=`uname
-m` /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}.spec 2> /builddir/$
{CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}_build_err.log | tee
/builddir/${CURRENT_BUILD_PACKAGE}_build/SPECS/$
{CURRENT_BUILD_PACKAGE}_build_out.log

– RPMs will be written to <path-to-chroot>/builddir/<package-
name>_build/RPMS

26RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

Building RPMs

● Incremental builds
– Modify source code and re-run build command.

– Objects that were not affected by file changes, are
not re-built speeding up the whole process.

27RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

A quick example: kernel

● Before executing “prep” stage, modify kernel.spec file:
– %define buildid .dev (no blank space before nor after “%”)

– Disable signing (for x86_64)
● %global signkernel 0
● %global signmodules 0

– In %build:
● Comment “make -s mrproper” prepending a “#”

● Add the following options to “prep” and “build”
rpmbuild commands:
– --without debuginfo --without debug --without perf --without

cross_headers --without headers --without doc --without
tools

28RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

A quick example: kernel

● Before executing “build” rpmbuild command, modify
<path-to-
chroot>/builddir/kernel_build/BUILD/<kernel>/<kernel-
2>/configs/<kernel> (i.e.: kernel-4.9.14-x86_64.config)
– Change:

● CONFIG_RANDOMIZE_BASE=n
● CONFIG_RANDOMIZE_MEMORY=n
● CONFIG_MODULE_SIG=n
● CONFIG_MODULE_SIG_ALL=n
● CONFIG_MODULE_SIG_UEFI=n
● CONFIG_MODULE_SIG_SHA256=n
● CONFIG_KEXEC_BZIMAGE_VERIFY_SIG=n
● CONFIG_KEXEC_VERIFY_SIG=n

29RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

A quick example: kernel

● Extras
– Eclipse is a good IDE for kernel dev + debugging

(as a gdbserver front-end) in my experience
● Source debugging is a bit tricky though, due to compiler

optimization

– QEMU is a good hypervisor for kernel debugging. It
has a gdbserver stub. Had a few issues debugging
boot stage.

● Run QEMU image with “-s” parameter and attach gdb to
port 1234.

30RPMs for Devs | Martin Balao (martin.uy) | v1.1 EN | CC BY-SA

References

● https://github.com/rpm-software-
management/mock/wiki

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

